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DESIGNATIONS AND ABBREVIATIONS 
 

GR – general theory of relativity 
QFT – quantum field theory 
QED – quantum electrodynamics 
QCD – quantum chromodynamics 
GUT – grand unified theory 
MG – modified theory of gravity 𝜆 – coupling constant 𝑅 – scalar curvature of space 𝑅𝜇𝜈  – Ricci tensor 𝑔𝜇𝜈 – metric tensor 𝑔 – determinant of the metric 𝑔𝜇𝜈 𝑇𝜇𝜈 – energy–momentum tensor 𝐺𝐴𝐵 – multidimensional metric, A,B=0,1,2,3,….,N 𝛤𝐴𝐵𝐿  – Christoffel symbols 𝒮 – action 𝑑𝒮2 – metric ℒ𝑚𝑎𝑡𝑡𝑒𝑟 – matter Lagrangian 𝑘 – gravitational constant in n-dimensional space 𝐻 – Hubble parameter 𝑎 – scale factor 
FRW – Friedmann–Robertson–Walker universe 
AdS – Anti-de Sitter Space 
dS – de Sitter Space 
Branes – браны 
M – theory – string theory 
Δ – mass gap ℳ𝑠 – magnetic monopoles 
DQC – Dirac Quantization Condition 
AMANDA – Antarctic Muon And Neutrino Detector Array 
ANITA – Antarctic Impulse Transient Antenna 
ANTARES – Astronomy with a Neutrino Telescope and Abyss environmental 
RESearch 
LHC – Large Hadron Collider 
MACRO – Monopole, Astrophysics and Cosmic Ray Observatory 
MODAL – MOnopole Detector At LEP 
MoEDAL – Monopole and Exotics Detector At the LHC 
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INTRODUCTION 
 

General description of the research 

The dissertation work shows the results of the mass gap research in the energy 
spectrum of a monopole-like object with nonlinear spinor source and hypothetical 
objects in multidimensional space-time – Branes in the framework of the modified 
gravity. 

Relevance of the topic 
In modern physics for understanding and describing the structure and evolution 

of the Universe there is a necessity for the investigation of models of the Universe in 
higher-dimensional space-time. There are many applications of the theory of 
multidimensional space-time in string theory, Grand Unified Theory (GUT), 
cosmology. It is well known that unified field theory is the unification at ultra-high 
energies of all fundamental interactions – gravitational, electromagnetic, weak and 
strong.  

A very promising way for unification of two of them – gravitational and 
electromagnetic interactions first was proposed by Kaluza and Klein in the 1920s 
within the framework of 5 – dimensional theory. Later, superstring theories requiring 
extra space dimensions were created. Nowadays, models of the Universe in higher-
dimensional space-time are under consideration. There are huge applications of these 
models in a wide range of physics, especially in high-energy physics for solving 
different problems such as the problem of mass hierarchy, stability of the proton, ect. 

Another argument in support of a transition to the geometry of a higher-
dimensional space is the possibility to analyze and investigate various compact 
astrophysical objects: domain walls, thick branes. According to the theory of gravity, 
it is supposed that we live in the thin brane, which is n-dimensional hypersurfaces 
embedded in the multidimensional space-time (bulk). Whereas, according to the string 
theory brane objects are multidimensional hypothetical fundamental objects, which 
have a dimension less than the dimension of the space in which they are located. These 
objects were first predicted within the framework of Einstein’s theory of gravity. 
Within the framework of theories of the brane world, it is possible to naturally describe 
the hierarchy of masses of elementary particles, as well as to solve a number of other 
problems of the theory of elementary particles. 

In fundamental physical theories such as Maxwell’s electrodynamics or General 
Relativity (GR), regular solutions are very important. Regular solutions are solutions 
with finite energy for which the corresponding fields are finite in the entire space: in 
the center and at infinity, respectively. 

The first part of the work consists of the considering regular solutions of the 
gravitational equations describing Branes in multidimensional space-time within the 
framework of ℱ(𝑅) modified theories. The first thing that needs to be said is that 
modified theories of gravity can be interpreted as an alternative to the cosmological 
constant (or dark energy) for explaining the accelerated expansion of the Universe. One 
way to describe and explain the accelerated expansion of the Universe is the 
assumption of the existence of mysterious dark energy. Alternatively, there is another 
interesting approach in explaining it – modified theories of gravity. The most surprising 
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thing about these theories is that the modified theories of gravity can explain inflation 
at the early stage of the Universe. Another good thing about these theories is that they 
can explain the modern accelerated expansion of the Universe. In 1998, when 
observing supernovae type Ia the accelerated expansion of the Universe was 
discovered.  

This is a completely new approach in describing the accelerated expansion of the 
Universe, since we do not use the old methods of GR and try to modify them. 
Therefore, these theories are called modified theories of gravity (MG). One of the most 
striking features of these theories is that the Lagrangian density is no longer the scalar 
curvature R (as in GR), but some non-linear function of the scalar curvature ℱ(𝑅). In 
addition, it should be possible to obtain within these ℱ(𝑅)  theories hypothetical 
objects predicted by GR without matter like Branes in multidimensional space-time. 

The second part of the work is consist of considering magnetic monopoles (ℳ𝑠) 
within the framework of non-Abelian Yang – Mills fields interacting with  a spinor 
field. It is clear that a magnetic monopole is a hypothetical elementary particle with a 
nonzero magnetic charge – the source of a radial magnetic field. A magnetic monopole 
can be considered as a single pole (north or south) of a long and thin permanent magnet. 
The electrical and magnetic components of the electromagnetic field are described by 
similar equations, but behave differently. It is very clear from the observations that the 
electric field can be created by a single "pole", such a system is called monopole. On 
the other hand, we can observe that the magnetic field is created only by a dipole – a 
pair of poles, north and south. There is no real physical confirmation of the existence 
of a magnetic monopole. It is known that between electric and magnetic charges could 
exist a symmetry, so that it would be natural to assume that Maxwell’s equations 
become symmetric when containing the density of the magnetic charge. So, if it would 
be found, it would be necessary to rewrite Maxwell’s equations. 

In 1931 Paul Dirac demonstrated this possibility theoretically. He suggested that 
from the Quantum electrodynamics (QED), which is asymmetric, there is a possibility 
to construct a symmetric QED by adding a magnetic term-magnetic charge. This 
hypothetical magnetic object was firstly proposed by Dirac and called Dirac monopole. 
Later, magnetic monopoles in non-Abelian gauge theories were discovered 
independently by Gerard ’t Hooft and Alexander Polyakov. In theoretical physics, the 
’t Hooft Polyakov monopole is similar to the Dirac monopole but without any 
singularities. 

90 years have passed, but the problem of the existence of a ℳ𝑠 is still relevant, 
and more and more experiments are being carried out to solve it. It is important to 
investigate properties of a magnetic monopole like: magnetic field strength, energy 
spectrum. As yet there is no evidence for the existence of ℳ𝑠, but they are interesting 
theoretically. They find their applications in a huge variety of topics in theoretical 
physics, including problems in the standard model, GUT, astrophysics, cosmology. 

In this research, in SU(2) Yang – Mills theory, which contains a doublet of 
nonlinear spinor fields monopole-like solutions will be obtained. It would be supposed 
that these solutions describe a magnetic monopole created by a spherical lump of 
nonlinear spinor fields. One might suppose that, if it would be possible to find regular 
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monopole–like solutions without involving scalar fields, then they might already be 
topologically trivial. This would be of great interest, if it turns out that there is a 
minimum in the energy spectrum of such monopole-like objects. Such a minimum in 
the energy spectrum can be considered as a mass gap. Using the obtained results, one 
then may try to understand the nature of the mass gap in a more complicated situation 
in QCD. 

The most surprising thing about the mass gap is that problems of the existence  
of a mass gap and Yang-Mills theory are one of 7 challenging unsolved Millennium 
Prize Problems in mathematics. If this problem is successfully solved, Clay 
Mathematics Institute offered a prize of $1,000,000. The difficulty of solving this 
problem lies in the fact that it is necessary to prove that any compact gauge group G  
includes a non–trivial quantum theory of Yang-Mills of R4 and has a positive mass gap 
Δ > 0. 

Yang-Mills theory is a gauge field theory. The mass gap (Δ) is the mass of the 
least massive particle predicted by the theory. As an example, consider the theory of 
the strong interaction – G=SU(3). To solve this problem, the winner must prove that  
glueball-quanta of the strong interaction have a lower mass boundary and, therefore, 
cannot have any light values. At a deeper level, it means that there are no massless 
particles predicted by the theory (except the vacuum state).  The mass gap has been 
discovered experimentally and confirmed through computer modeling, however it is 
not  understood theoretically.  

All these moments indicate relevance of the problem for the development of 
fundamental science, studied in this dissertation work. 

The goals of the research: To obtain and investigate regular solutions of Branes 
in multidimensional space-time within the framework of ℱ(𝑅) = −𝛼𝑅𝑛  modified 
theories of gravity and study topologically trivial monopole-like solutions within the 
confines of SU(2) Yang-Mills theory including a nonlinear doublet of spinor fields and 
show the presence of a minimum in energy spectrum (mass gap). 

To achieve these goals, it is necessary to solve the following objectives: 
In the first part of the research:  
– make a historical review of modern physics theories; 
– consider a historical review of modified theories of gravity; 
– make a brief overview of the hypothetical objects – Branes (𝒟– branes); 
– obtain flat-symmetric solutions describing branes in multidimensional space-

time; 
– get phase portraits. 
In the second part of the research: 
– make a brief overview of magnetic monopoles; 
– make a brief overview of Dirac and ’t Hooft-Polyakov monopoles; 
– make an overview of searches of magnetic monopoles; 
– write the Lagrangian and field equations for SU(2) Yang-Mills theory + 

nonlinear spinor fields;  
– present the Ansatz for vector and spinor fields and investigate the corresponding 

field equations; 

https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Yang%E2%80%93Mills_theory
https://en.wikipedia.org/wiki/Mass_gap
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– obtain topologically trivial monopole-like solutions within the confines of 
SU(2) Yang-Mills theory including a doublet of nonlinear spinor fields; 

– study energy spectra of these solutions and show that they have a global 
minimum (mass gap); 

– show that the obtained monopole-like solution differs from ’t Hooft-Polyakov 
monopole. 

Object of the research: Modified theory of gravity, SU(2) Yang-Mills theory 
which contains spinor fields and regular solutions in it. 

Subject of the research: Branes in ℱ(ℛ) modified theory and SU(2) Yang-
Mills monopole with nonlinear spinor source. 

Research methods: Numerical and analytical methods for studying nonlinear 
differential equations of modified theories of gravity describing Branes and monopole-
like solutions within SU(2) Yang-Mills theory including nonlinear spinor fields. 

Scientific novelty 

The novelty and originality of research lies in the fact that: 
– new flat-symmetric solutions in multidimensional modified theories of gravity 

for Branes are obtained; 
– the properties of Branes in modified theories of gravity are investigated; 
– it has been demonstrated that the possibility of the appearance in modified 

theories of gravity Branes is significantly determined by the type of function: ℱ(ℛ) =−𝛼𝑅𝑛; 
– new Yang-Mills monopole with the source of nonlinear spinor fields was 

obtained; 
– the properties of Yang-Mills monopole are investigated; 
– it was shown that Yang-Mills monopole with the source of nonlinear spinor 

fields differs from the Dirac and ’t Hooft-Polyakov monopole; 
– it was demonstrated that monopole-like solutions have a minimum in the energy 

spectrum, which can be considered as mass gap; 
– it has been demonstrated that the main reason of the appearance of a mass gap 

in the energy spectrum of monopole-like objects in SU(2) Yang-Mills theory was the 
presence of a doublet of nonlinear spinor fields. 

The following points clarify the scientific and practical significance of this 

dissertation work, which are: 
– hope for contribution to a deeper understanding of the obtained results, where 

our Universe considered like a brane world; 
– obtained new regular solutions in gravitational theories are an interesting and 

necessary task for understanding the gravity interaction. Thick branes are hypothetical 
objects that may be discovered in the future. Therefore, the study of their properties is 
an important task in theoretical physics; 

– obtained new monopole-like solutions in SU(2) Yang-Mills theory aim to give 
a comprehensive account for understanding the properties of magnetic monopole. 
Magnetic monopoles are hypothetical particles that are actively researched. The 
investigation of their properties might shed light on the problem of symmetry of QED;  

– obtained new monopole-like solutions in SU(2) Yang-Mills can open up the 
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door to investigate at the deeper level the concept of «mass gap», which is one of 7 
Millennium Prize Problems; 

– physical interpretation of obtained solutions is that they describe a consistent 
monopole+sea quarks system. Therefore, the obtained solutions can be used to describe 
some quasiparticles, which is monopole+sea quarks system in a quark-gluon plasma. 

Defense Provisions: 

1. In the theory of gravity with a modified Lagrangian ℱ(𝑅) = −𝛼𝑅𝑛 there are 
thick branes  with  anti-De Sitter asymptotics and with a special point located at the 
centre of the brane and existing at the following range of parameters of 𝑛: 1 < 𝑛 < 2. 

2. SU(2) Yang-Mills theory with the source of doublet of nonlinear spinor field 

leads to the existence of topologically trivial monopole-like objects with 𝐻~𝑀/𝑟3 
asymptotic behavior of the SU(2) magnetic field.  

3. Yang-Mills monopole with the source of nonlinear spinor field has a minimum 

in the energy spectrum (mass gap) –  (𝑊̃𝑡)𝑚𝑖𝑛 = 5.812 and 53.748  for the ground 

and first excited state for 𝐸̃ = 0.955, the appearance of which is the consequence of 
nonlinearity of Dirac field. 

The personal contribution of the author lies in the fact that the entire volume 
of dissertation work, the choice of research method, problem solving and numerical 
calculations are performed by the author independently. Setting tasks and discussing 
the results were carried out jointly with scientific supervisors. 

Reliability and validity of the obtained results. The dissertation used the 
modified theories of gravity and  SU(2) Yang-Mills theory including a doublet of 
nonlinear spinor fields and proven mathematical methods of numerical solutions of 
ordinary differential equations in Wolfram Mathematica and Maple packages. The 
obtained results on the basis of numerical calculations are consistent with the 
qualitative study of the obtained differential equations, as well as with studies 
conducted earlier by other authors. Also, the reliability and validity of the results 
obtained are confirmed by publications in journals of far abroad with high impact 
factors and in publications recommended by the Committee for Control in the Field of 
Education and Science of the Ministry of Education and Science of the Republic of 
Kazakhstan, and in the proceedings of international scientific conferences of near and 
far abroad. 

Approbation of the dissertation. The results obtained in the dissertation work 
were reported and discussed:  

– at the second International Scientific and Practical Internet Conference "Actual 
issues of modern research" (2019, Nur-Sultan, Kazakhstan).  

– at the International Scientific Conference of Students and Young Scientists 
"Farabi Alemi" (2020, Almaty, Kazakhstan); 

– at 1st Electronic Conference on Universe (Online, 22-28 February 2021, China) 
– research in the field of monopole solutions was awarded in the Republican 

competition of research among universities of the Republic of Kazakhstan conducted 
by the Aktobe Regional University named after K. Zhubanov (2021, Aktobe, 
Kazakhstan);  

– and also discussed with Professor Jutta Kunz in the framework of international 
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cooperation and internship (from November 2021 to February 2022, Oldenburg, 
Germany) . 

Publications. Based on the materials of the dissertation, 8 printed works were 
published: 2 - publication in Kazakh journals, which are recommended by the 
Committee for Control in the Field of Education and Science of the Ministry of 
Education and Science of the Republic of Kazakhstan (KKSON MON RK) and 3 
articles in journals of foreign countries with high impact factors included in the 
international information resource Web of Knowledge (Thomson Reuters, USA) and 
Scopus (Elsevier, the Netherlands); 3 works in the collections of International 
Scientific Conferences. 

The structure and scope of the thesis: The thesis consists of an introduction, 4 
sections, conclusion and list of references. The work is presented on 110 pages of 
printed text, contains 54 drawings and 2 tables. The list of references contains 161 
items.  
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1  MODERN PHYSICS THEORIES 
 

1.1 Multidimensional Kaluza-Klein theory 

This section is devoted to consider the historical background of multidimensional 
Kaluza-Klein theory, since in the second chapter, we are investigating of Branes 
solutions in multidimensional space-time. 

It is known from GR, that space-time is four-dimensional and there is no doubt 
that this theory is in amazing agreement with observations. In the twentieth century, 
after developing string theory and M-theory, there arose the idea of existence of more 
than four (n>4) space-time dimensions. Such a kind of space-time is called 
multidimensional space-time.  

Currently, almost in all physical theories, investigation and existance of extra 
dimensions is play important and fundamental role in attempts to explain and combine 
all physical interactions on the basis of general principles. One argument in support of 
studying of extra dimensions is that any realistic candidate for a GUT such as 
superstring /M-theory are formulated in multidimensional space-time. Therefore, the 
concept of multidimensional space-time is essential for superstring theory, which is the 
most promising high-energy theory, combining quantum gravity with gauge field 
theory. Low-energy consequences of this theory require, for example, (9 + 1) -
dimensional space-time and (10 + 1) - dimensional space-time for M-theory, while 
other dimensions are forbidden. Naturally, when we look around the Universe, we only 
ever see 4-dimensional space-time. Hereupon, two important questions related to the 

dimensionality of our universe automatically and logically had been arisen: 
• Why do we observe and feel only (3 + 1) dimentional space-time of the 

Universe? 
• If it turns out that the dimension of space-time is more than 4, then where and 

how are these extra dimensions hidden?  
Looking to the second question, it is believed that the extra dimensions are 

compactified (as if they rolled up into "tubes"), and this is the reason why they are not 
visible by us. Traditionally, the observed 4-dimensional space-time appears as a result 
of compactification of extra dimensions, where the characteristic size of extra 
dimensions becomes much smaller than the size of 4-dimensional space-time. Much 
attention is given to the second question, so that finding answer to it and if dimensions 
are hidden from observations, then, it would be natural to assume that the visible 
universe is 4-dimensional. 

 In the next section we will consider in detail a completely different approach to 
solving previous problems. This approach and method is absolutely a new promising 
way of evolution of extra dimensions. Such approach is called «brane world» or 
sometimes «brane world scenario». One of the most striking features of this theory is 
that according to the «brane world scenario», particles related  to electromagnetic, 
weak and strong interactions are limited by some hypersurface (like a thin leaf) - brane, 
which is included in some multidimensional space – bulk [1]. It is assumed that such a 
«brane world scenario» is realized in our Universe. This method has become very 
popular among scientists and was studied in the following articles [2-4]. 

Before moving on to our main topic of branes, it is important to keep in mind the 
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historical backgroud of multidimensional theories. Thus, we will briefly discuss the 
history of these theories, in particular, we will briefly focus our attention on the Kaluza 
– Klein theory. 

As was mensioned, one of the main problems of multidimensional theories of 
space-time is the mechanism, due to which additional dimensions become hidden. The 
appearance of additional dimensions can contribute to solving known problems of  
particle theory: the problem of hierarchy, the cosmological constant. To solve these 
problems, field theory models, which have their own advantages and disadvantages 
were created. One of the advantages of these models is that by considering different 
models a number of new phenomena can be discovered. The disadvantages are related 
to the fact that some models may have nothing to do with the fundamental theory and, 
accordingly, cannot be realized in nature. 

One has created the cube of physical reality, which represents a geometrization of  
models of multidimensional space-time for all fundamental interactions, see Figure 1.1 
[5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.1 – The cube of physical reality [5, p.119] 
 

In the Figure 1.1 , on the vertical axis located space-time of dimension 𝑛 ≥ 4, 
while the horizontal axis gives the carriers of fields interactions. Firstly, lets take the 
electromagnetic interaction, where the force carriers are photons, described by the 
vector 𝐴𝜇. Secondly, the carriers of gravitational interaction – gravitons. Thirdly, the 

weak force is carried by the 𝑊±𝜇 and 𝑍𝜇 bosons and finally, the carriers of strong 

interactions – gluons, described by the vector 𝐴𝑁. It is noticeable from the cube of 
physical reality, that Einstein theory (GR) is geometrized in 4-dimentional space-time, 
Kaluza (electromagnetic) and Kaluza - Klein theory in 5-dimentional, in extra 
dimensions - gravity-electro-weak interactions and gravity-strong interactions [5, p. 
120]. 

Theodor Franz Eduard Kaluza was the first German scientist who introduced the  
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ideas about multidimensional space in 1921 [6]. To create a five-dimensional space-
time, Kaluza took the idea of German mathematician Hermann Weyl [7].  In 1918,  
the main goal of Kaluza’s work was to combine all known types of interactions and 
create a unified theory of everything. 

In 1919 Kaluza put forward the idea of a "folded" fifth dimension through which 
2 types of fields can be combined. The main peculiarity of Kaluza theory is the 
geometrization of the electromagnetic and gravitational interactions. In 1930, Swedish 
physicist Oskar Klein improved and the extended Kaluza’s ideas, so the theory of five-
dimensional space-time was called “Kaluza-Klein Theory”. Nevertheless, scientists 
accepted this idea as nothing other than artifice or fantasy and there is no connection 
with the real world. Because of some limitations, Kaluza theory was forgotten and for 
more than fifty years was not taken seriously. 

However, in 1980, after the creation of the superstring theory by M.B. Green and 
J. H. Schwarz [8], this theory was revived again. Superstring theory unites all 
interactions in 10 dimensions by the convolution of six. In this way, scientists began to 
seriously think about the idea of a extra-dimensional space-time. So, after the creation  
of superstring theory, the Kaluza-Klein theory was revived again and still is relevant 
and became a popular research topic [9-13]. Thus, Kaluza’s idea served as the 
beginning of the development of ideas about multidimension as the beginning of a new 
era in physics. 

Until recently, the main focus was on theories like the Kaluza-Klein model, in 
which the extra dimensions are compact and essentially homogeneous. It is the 
compactness of the extra dimensions that provides in such models the effective four-
dimensions of space-time at distances exceeding the compactification scale (the size of 
the extra dimensions). In this case, excess dimensions should be microscopic in size. 
According to the widespread point of view, the scale of the compactification should be 

of the order of the Planck scale. On the Planck scale (distance 𝑙𝑝𝑙~10−33𝑐𝑚, the 

corresponding energy is 𝑀𝑃𝑙~1019𝐺𝑒𝑉  ), the direct detection of extra dimensions 
seems hopeless. 

Much attention is given to the mathematical glory and elegance of Kaluza- Klein 
theory. It was already mentioned that the main goal of Kaluza- Klein theory was the 
geometrization of the electromagnetic and gravitational interactions, respectively.  
The metric for the gravitational field has the form:  

 

 𝑑𝒮2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 , (1.1) 

 
where 𝜇, 𝜈 = 0, 1, 2, 3 space-time coordinates. By analogy with the previous equation, 
Kaluza successfully combined the geometry of gravity and electromagnetism by  
rewriting the above equation in the following way:  
 

 𝑑ℐ2 = 𝒢𝐴𝐵𝑑𝑥𝐵𝑑𝑥𝐴, (1.2) 
 

where 𝐴, 𝐵 = 0, 1, 2, 3, 5. We can express the physical meaning of the Kaluza-Klein 
theory by considering the Riemannian theory in five dimensions. To illustrate this, it 
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is necessary to decompose  𝑔𝜇𝜈, which is the metric tensor, to a matrix with a field of 

5 x 5. Similarly, with the metric tensor 𝑔𝜇𝜈 , there will be created 𝒢𝐴𝐵 , which is 

determined by the following matrix [5, p. 67]: 
 

( 
 𝒢00 𝒢01 𝒢02 𝒢03 𝒢05𝒢10 𝒢11 𝒢12 𝒢13 𝒢15𝒢20 𝒢21 𝒢22 𝒢23 𝒢25𝒢30 𝒢31 𝒢32 𝒢33 𝒢35𝒢50 𝒢51 𝒢52 𝒢53 𝒢55) 

 
  

 ⇓ 

 (𝒢𝜇𝜈 𝒢𝜇5𝒢5𝜈 𝒢55)  ⇓ 

 (𝑔𝜇𝜈 𝒜𝜇𝒜𝜈 𝒢55),  

 

where 𝜇, 𝜈 = 0, 1, 2, 3, 𝒢𝜇𝜈~𝑔𝜇𝜈, 𝒢5𝜈~𝒜𝜈, 𝒢55~ − 𝜑2 and 𝜑 is scalar field. One of 

the most amazing features of the metric tensor 𝒢𝐴𝐵, is that  their components were 
renamed. At a deeper level, in Figure 1.2 you can follow the renaming of elements of 
the matrix to the original Einstein field and the Maxwell field. One can use the 
visualization of Kaluza-Klein method in Figure 1.2. 

 
 
 
 

 
 
 
 
 
 

 
 
 

 
Figure 1.2 – Kaluza- Klein theory 

 
It is supposed, that by using 𝒢𝐴𝐵 can manage to modify Einstein’s equations:  
 

 𝑅𝐴𝐵 − 12𝑔𝐴𝐵𝑅 = 8𝜋𝐺𝑐4 𝑇𝐴𝐵 . (1.3) 
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So by introducing the new 𝒢𝐴𝐵  one can manage to geometrize gravity and 
electromagnetism. This is the essence of Kaluza's trick, which came as a complete 
suddenness to Albert Einstein. Just by adding to the gravitational field electromagnetic 
one, Kaluza and Klein was able to create a five-dimensional theory. There are some 
consequences of such theory, which were later called "miracles of Kaluza-Klein". 

1. The main miracle of Kaluza-Klein theory is that 15 Einstein equations 
decayed into the 3 fields:10 four-dimensional general gravity equations + 4 Maxwell 
equations + 1 scalar field; 

2. the next miracle is that in the equations automatically 𝑇𝜇𝜈 appeared; 

3. the last miracle is that when a particle moves in a gravitational and 
magnetic field, 4 equations from the Einstein’s equations coincide with the equations 
of the geodesic line:  

 

 
𝑑𝑥5𝑑𝑆 = −2𝑞√𝐺𝑚, (1.4) 

with momentum  

 𝑃5 = 𝑚 𝑑𝑥5𝑑𝑆 = −2√𝐺𝑞. (1.5) 

 
The idea of the exta-dimension of space-time (greater than five) was taken by analogy 
with the theory of Kaluza-Klein, where the new additional metric tensor give us the 
possibility to introduce a new vector field. Therefore, the multidimensional metric 
tensor 𝒢𝑀𝑁, can be presented by the following matrix [5, p. 68]: 

 

 (𝒢𝛼𝛽 𝒢𝛼5 𝒢𝛼6 ⋯𝒢5𝛽 𝒢55 𝒢56 ⋯𝒢6𝛽 𝒢65 𝒢66 ⋯⋯ ⋯ ⋯ ⋯)  

 ↓  

 (𝑔𝛼𝛽 𝜆𝛼 𝜎𝛼 ⋯𝜆𝛽 𝒢55 𝒢56 ⋯𝜎𝛽 𝒢65 𝒢66 ⋯⋯ ⋯ ⋯ ⋯),  

 
where the mixed components, for example 𝒢56 or 𝒢65 related to the vector potentials 
of the corresponding interactions. 

So far we have been talking about the mathematical beauty of describing 
multidimensional space-time. No matter how mathematically beautiful a given theory, 
it has a number of disadvantages that state that the dimension of space-time can not be 
more than four:  

1. The instability of bodies in dimension n=5 consists in reducing the forces of 
attraction between the planets in the solar system, as a result of which they can fall;  

2. The instability of atoms due to the lack of energy levels, which would mean the 
impossibility of the existence of the planets and all living things;  
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3. Many of the physicists wondered what is 𝐺55? Whether it is a Higgs field, or 
a massless field;  

4. This theory did not affect the other two equally important types of interactions: 
weak and strong;  

5. Did not give any new experimental predictions. 
For the implementation of the 4-th item, five dimensions of Kaluza were not 

enough, as six, seven or ten were not enough to combine all the interactions. To draw 
the conclusion, according to the above shortcomings of Kaluza-Klein theory in the 
modern theory «brane world» approach is more popular. 
 

1.2 Modified theory of gravity  

In this section, I will provide a historical overview of modified theories of gravity. 
One need to consider MG, so that it should be possible to obtain within these theories 
astrophysical objects predicted by GR without matter: thick branes (𝒟– branes) in 
multidimensional space-time. 

In 1915 Albert Einstein demonstrated his genius by publishing the theory of 
general relativity. After proposing Einstein’s new theory, it was largely ignored for 
several decades. But in the second half of the 20th century, GR had become very 
popular. The theory works so well that it is consistent with observations such the 
perihelion precession of Mercury's orbit, the deflection of light by the Sun, 
gravitational redshift [14]. 

Despite of these tremendous successes, however, scientists are convinced that GR 
does not provide us with the full picture, so that new approaches and theories have to 
be created or one has to start testing old theories with new experimental data. It seems 
to confirm the idea of generalization of Einstein’s theory of gravity, which is called as 
modified theories of gravity (MG) or alternative theories of gravity. 

It is interesting to note that searching new approches began even before Einstein’s 
creation of the theory of relativity, with attempts to modificate Poisson’s equation. 
Alternative theories continued to flourish over the next years. One reason could have 
been the very small number of experiments prior to the late 1960s. The fact of a small 
number of experiments led to the creation of a large number of alternatives to Einstein’s 
theory. Interestingly, these alternative models revived the theory of gravity and played 
a primary role in the development of new experiments.  

Recently, from the point of view of observations scientists has been concerned 
with GR for some important reasons. First of all, GR had never been tested directly on 
weights greater than the Solar System. Einstein's gravity has undergone many 
additional tests over the past century, such as the impressive gravitational wave 
detection reported in 2016 [15]. But it is impossible to test this theory under all 
conceivable conditions. And experts have long suspected that GR may not hold true in 
regions with extremely high mass densities. 

The second reason to generalize GR is the concept of a dark energy. Its existence 
is postulated to explain the observed accelerated expansion of the Universe, which is 
otherwise impossible in the Universe governed by GR and containing only the matter 
species like radiation and matter.  

https://en.wikipedia.org/wiki/Mercury_(planet)
https://en.wikipedia.org/wiki/Gravitational_lens
https://en.wikipedia.org/wiki/Sun
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Indeed, if GR ever fail, numerous competing theories of gravity proposed in 
recent decades will be waiting in the wings. Therefore, the classification of modified 
theories of gravity started in the XVII-XIX centuries. The discovery of MG is 
associated with such scientists as: Saul Perlmutter, Brian P. Schmidt and Adam Riess, 
who were awarded by the Shao Astronomy Prize in 2006 and the Nobel Prize in Physics 
in 2011 for proving accelerated expansion of the universe.  

There is no generally accepted definition of modified gravity. But it is clear that 
this must be a low-energy modification explaining the late time of the Universe, at a 
deeper level it has to explain current accelerating expansion of the Universe. In fact, 
the early Universe requires additional fields such as the inflaton or other modifications. 
It is well-known that the model which explains the early acceleration of the Universe 
is known as inflation, whereas model that explains the late acceleration of the Universe 
is called dark energy. 

Alan Guth firstly proposed the inflationary model, which was studied by many 
physicists such as Starobinsky A., Linde A., Mukhanov V. and a number of other 
scientists [16-21]. The inflationary theory of the Universe was developed relatively 
recently. Today, it is considered as an accepted part of the Big Bang theory, even 
though the central ideas of the Big Bang theory were well established long before the 
inflationary theory was formulated. 

According to Alan Guth, the Universe had to have a high energy density. 
According to thermodynamics, the density of the universe should cause it to expand at 
an incredible rate, so the Universe expanded 50 times in a tiny fraction of a second. 
The scientist called this theory the inflationary model of the Universe. With a help of 
this model, it is possible to explain the temperature uniformity of all regions of the 
Universe. 

In the period from 10−35  s to 10−33  s, due to the inflationary model the 
Universe exposed maximum negative pressure of matter, leading to an exponential 
increase in the kinetic energy of the Universe and its volume by many orders of 
magnitude. The main idea of the inflationary model is the exchange of the power law 

of expansion (𝑎(𝑡)~𝑡1/2 ) to the  to exponential law 𝑎(𝑡)~𝑒𝐻(𝑡)𝑡 ,  where 𝐻(𝑡) =(1/𝑎)𝑑𝑎/𝑑𝑡- the Hubble parameter of the inflationary stage, which depends on time.  
The accelerated expansion of the Universe was first proposed by recent 

observations of supernovae of type Ia and agrees with the large-scale structure of the 
Universe, baryonic acoustic vibrations and weak lensing [22, 23]. 

It has long been established that it is extremely important to apply the scale factor. 
This requires a reliable way to determine the distances to distant objects, independent 
of the check. Measuring distances in cosmology is not an easy task. However, in the 
late 1970s-1980s, important results have appeared on the discovery of a class of 
astronomical sources that could help solve this problem - these are type Ia supernovae.  

Type Ia supernovae are thermonuclear explosions of white dwarfs, and since, on 
average, white dwarfs explode at similar masses, such supernovae have similar light 
curves and show luminosity. For this reason, flashes are called standard candles. As a 
result of almost two studies, astronomers are based on the detection of brightness and 
on the spectrum of the determination of the luminosity of supernovae Ia. Awareness of 
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the luminosity at maximum brightness makes it possible to obtain independent 
feedback to them (and, therefore, to the galaxies in which they are found).  

Throughout the 1990s. several groups of scientists have been working on using Ia 
supernovae in cosmology as standard candles. As a result, in 1997-1999 results were 
obtained that made it possible to discover the acceleration of the expansion of the 
Universe. Observations have shown that supernovae at redshifts greater than 0.5 are 
further away (look weaker) than would be expected from the then standard model, in 
which the Universe is slowing down its expansion all the time. In order for supernovae 
to be at a more distant distance, it is necessary that the Universe has been expanding 
faster and faster over the past few billion years. The accelerated expansion of the 
Universe was discovered in 1997–1999. according to the results of observations of type 
Ia supernovae [24]. 

From these facts, one may conclude that in 1998, one of the amazing discoveries 
of that time was discovered - the accelerated expansion of the Universe, which was a 
big surprise for physicists and even was criticized for some time. For such outstanding  
discovery Saul Perlmutter, Adam Riess, and Brian Schmidt were awarded by Nobel 
Prize in Physics. 

From these facts, one may conclude that the problem of explaining the 
phenomenon of the accelerated expansion of the Universe has led to a huge growth of 
models, for example, two types of models are distinguished in the literature: 

1) Many scientists believe that one of the methods of explaining this phenomenon 
is the assumption of the existence of "dark energy"; 

2) another method is creating modified theories of gravity, so that they try to 
replace or connect such physical concepts as "inflation", "dark matter" and "dark 
energy". 

To begin with, there is no answer at the moment to what dark energy is, but the 
name comes from the fact that it is necessary to introduce a hypothetical energy to 
explain the acceleration of the universe, because it was not directly observed. In 2013 
Planck Space Observatory created a cosmic microwave background radiation (CMBR) 
map or it sometimes called like «cosmic cake». The most surprising thing about this 
cosmic cake, is that it has allowed scientists to extract the most precise values of the 
Universe's components: dark energy (68.3%) and dark matter (26.8 %) [25]. 

According to some experts «dark energy» is considered as matter with very exotic 
properties: it has negative pressure and has a very unusual relationship between the 
pressure and density of this matter. In addition, this form of matter should interact 
extremely weakly with electromagnetic radiation. If all these conditions are met, one 
cannot deny that this is dark energy. Nowadays, there are many models of dark energy: 
Chaplygin gas, phantom matter, quintessence, and so on [26].  

On the other hand, there is a completely new approach to describing the 
accelerated expansion of the Universe, since we do not use the old methods of general 
relativity, but modify them. In order to consider reasons for using modified theories of 
gravity and different types of them I have created the following illustations, see Figure 
1.3 and 1.4.  
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Figure 1.3 – Motivation for MG 
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Figure 1.4 – Types of modified theories of gravity 
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It can be noticed from the Figure 1.4, there are a list of popular modified gravity 
theories: theories with exra fields, theories with higher order derivatives, non-local 
theories,theories with higher dimensions. One of the most remarkable features of the 
modified theory of gravity is that the density of the Lagrangian is no the scalar 
curvature 𝑅  (as in GR), but  has more complicated dependence on the curvature 
tensor and possibly further fields. Instead of curvature also torsion and nonmetricity 
can be used. A particular attractive set of models related to the theories with higher 
order derivatives are ℱ(𝑅)  gravity and Gauss-Bonnett gravity or ℱ(𝐺)  gravity. 

Another approach to modified gravity is ℱ(𝑇), where T is scalar torsion. In addition, 
it should be possible to use the Lagrange function, depending on different types of 
matter, only by variation the corresponding function. In this regard, as we will see in 
Chapter 2, the fundamental field equations become differential equations of the 4-th 
order. The most striking thing about these theories is that such modified theories of 
gravity explain not only inflation at the early stage of the Universe, but also the current 
accelerated expansion of the Universe. 

Recently Harko et al. [27] proposed the theory ℱ(𝑅, 𝑇) taking into account the 

gravitational Lagrangian as a function of the Ricci scalar 𝑅  and the energy-stress 

tensor 𝑇. They obtained the equation of motion of a test particle and the gravitational 

field equation in the metric formalism. The ℱ(𝑅, 𝑇) gravity models can serve as a 
justification for the late cosmic accelerated expansion of the Universe. Many authors 
studied completely different cosmological models in ℱ(𝑅, 𝑇) theory [28-32]. 

Lets consider the main idea of some of the modified theories of gravity illustrated 
in Figure 1.4. As for the possible modifications of GR, which can lead to equivalent 
behavior of dark energy and that are capable to realize the late accelerated expansion 
of the Universe, it is worth note here ℱ(𝑅) theory of gravity. ℱ(𝑅) gravity is actually a family of theories, each one defined by a different 

function the Ricci scalar 𝑅. The simplest case is just the function being equal to the 
scalar, this is GR. As a consequence of introducing an arbitrary function, there may be 
freedom to explain the accelerated expansion and structure formation of the Universe 
without adding unknown forms of dark energy or dark matter. Looking to the history, ℱ(𝑅) gravity was firstly proposed in 1970 by Hans Adolph Buchdahl (although 𝜑 
was used rather than f for the name of the arbitrary function). Note that the literature 
on ℱ(𝑅)-gravity is extensive, and reviews of this theory are given in [33-38]. 

Including a 𝑅2-term in the Lagrangian fields the so-called model of Starobinsky 
[37, p. 3]. This action is one of the earliest inflation models and remains one of the best 
inflation models to comply with the latest constraints. It is also interesting to note that 
many classes of models are identical to Starobinsky’s model for inflation. Due to the 
popularity of the model, it is natural to extend it to the acceleration of the Universe in 
recent years, which led to the emergence of ℱ(𝑅)-models defined by the generalized 

scalar function of curvature √−𝑔ℱ(𝑅) instead of the action in GR defined by √−𝑔𝑅. 

To consider the ℱ(𝑅) generalizations of Einstein’s equations it is necessary to 
consider the Lagrangian density:  

 

 ℒ = √−𝑔ℱ(𝑅). (1.6) 
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This is a common generalization of the Einstein-Hilbert density. Now let us  
derive the field equations by using the metric variational approach. After  integrating 
the equation (1.6) over the 4-total volume, one gets:  

 

 𝒮 = 116𝜋𝐺 ∫ 𝑑4𝑥√−𝑔[ℱ(𝑅) + ℒ𝑚𝑎𝑡𝑡𝑒𝑟], (1.7) 

 
where ℱ(𝑅)  is the analytical Ricci function of the scalar 𝑅 , 𝑔  defines  the 

determinant of the metric 𝑔𝜇𝜈 , and ℒ𝑚𝑎𝑡𝑡𝑒𝑟  is the general Lagrangian for an ideal 

liquid substance. After varying the action (1.7) one can get the equations of motion for 
modified gravity:  
 12𝑔𝜇𝜈ℱ(𝑅) − 𝑅𝜇𝜈ℱ′(𝑅) − 𝑔𝜇𝜈 ◻ℱ′(𝑅) + ∇𝜇∇𝜈ℱ′(𝑅) = − 𝑘22 𝑇𝑚𝑎𝑡𝑡𝑒𝑟𝜇𝜈 , (1.8) 

  

where ℱ′(𝑅) = ∂ℱ(𝑅)/ ∂𝑅 , 𝑘2 = 8𝜋𝐺 and 𝑇𝑚𝑎𝑡𝑡𝑒𝑟𝜇𝜈  is the energy-momentum 

tensor of matter.   
It is possible to rewrite the action [39] :  

 

 𝒮 = 12𝑘2 ∫ 𝑑4𝑥√−𝑔ℱ(𝑅) + 𝒮𝑚[𝑔𝜇𝜈,Ψ𝑚], (1.9) 

 
where Ψ𝑚 represent the matter fields. By introducing an auxiliary field 𝜎 one can 
rewrite the previous action to the following form:  
 

 𝒮 = 12𝑘2 ∫ 𝑑4𝑥√−𝑔[𝑓′(𝜎)𝑅 + 𝑓(𝜎) − 𝜎𝑓′(𝜎)]𝒮𝑚[𝑔𝜇𝜈,Ψ𝑚], (1.10) 

  
variation of this action with respect to 𝜎, gives 𝑓′′(𝜎)(𝑅 − 𝜎) = 0. 
Provided 𝑓′′(𝜎) ≠ 0, it follows 𝜎 = 𝑅 which after substitution in (1.10) gives (1.9). 
Working with an action having an explicit coupling between the auxiliary field and the 
curvature, 𝑓′(𝜎)𝑅 is known as the Jordan frame or also Pauli frame and it turns out 
that some discussions are simpler in so-called Einstein frame where the direct coupling 
disappears, for which we have to perform a conformal transformation 𝑔̃𝜇𝜈 = 𝑓′(𝜎)𝑔𝜇𝜈 

which gives:  
 

 𝒮 = ∫ 𝑑4𝑥√−𝑔̃ [ 𝑅̃2𝑘2 − 12 (∂𝜇𝜙)2 − 𝑉(𝜙)]ℱ(𝑅) + 𝒮𝑚[𝑒−√23 𝑘𝜙𝑔̃𝜇𝜈 , Ψ𝑚], (1.11) 

  
where the new scalar field 𝜙 (known as the scalaron) is defined by: 

 

 𝑓′(𝜎) = 𝑒√23𝑘𝜙 (1.12) 
and the potential is 
 

 𝑉(𝜙) = 𝑓′(𝜎)𝜎−𝑓(𝜎)2𝑘2𝑓′(𝜎)2 . (1.13) 
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The equivalence of this model to quintessence coupled to matter explains why this 
theory is free from the Ostrogradsky instability. But also, this coupling to matter in the 
Einstein frame is the origin of the modification of gravity. 

As it was mentioned above, tt has become an active field of research following 
work by Starobinsky on cosmic inflation [36-38]. Starobinsky gravity has the following 

form: ℱ(𝑅) = 𝑅 + 𝑅26𝑀2, where 𝑀 has the dimensions of mass. 

Starobinsky model can be defined by following action [40, p.1]:  
 

 𝒮 = 12𝑘2 ∫ 𝑑4𝑥√−𝑔[(𝑅 + 𝛼𝑅2)], (1.14) 

 
for which we obtain the field equations: 
  

 𝐺𝜇𝜈 = 11+2𝛼𝑅 [𝑘2𝑇𝜇𝜈 − 𝛼2 𝑅2𝑔𝜇𝜈 + 2𝛼∇𝜇𝜈𝑅 − 2𝛼𝑔𝜇𝜈 ◻ 𝑅]. (1.15) 

 
With no matter and for the Ricci tensor 𝑅𝜇𝜈 being covariantly constant, the equation 

of motion corresponding to the action (1.7) is:  
 
 0 = 2𝑓(𝑅) − 𝑅𝑓′(𝑅)  , (1.16) 
 

which is an algebraic equation with respect to 𝑅. If the solution of equation (1.16) is 
positive, it expresses a de Sitter universe and if negative an anti-de Sitter universe. De 
Sitter space is the maximally symmetric vacuum solution of Einstein’s field equations 
with a positive cosmological constant Λ . Anti-de Sitter space is a maximally 
symmetric  
Lorentzian manifold with constant negative scalar curvature, see Figure 1.5. 
In the FRW universe metric has the form [40, p.2]:  
 

 𝑑𝑠2 = −𝑑𝑡2 + 𝑎̂(𝑡)2∑3𝑖=1 (𝑑𝑥𝑖)2. (1.17) 

 

Assuming 𝑅 is equal to 𝑅 = 12𝐻2 + 6𝐻̇. Without the matter Eq.(1.8) gives  
 

 0 = − 12 𝑓(𝑅) + 3(𝐻2 + 𝐻̇)𝑓′(𝑅) − 6 𝐻̇𝐻 𝑓′′(𝑅) − 18𝐻2 𝑑𝑑𝑡 ( 𝐻̇𝐻2) 𝑓′′(𝑅) . (1.18) 
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a)  b)  c) 
 

Figure 1.5 – a) Spherical Universe (positive curvature); b) hyperbolic Universe 
(negative curvature); c) Flat Universe (zero curvature) [40, p. 4] 

 
Our main purpose is to look for accelerating cosmological solutions of the following 

form: de Sitter (dS) space, where 𝐻  is constant and 𝑎(𝑡)∞𝑒𝐻𝑡 , quintessence and 
phantom like cosmologies:  
 

 𝑎 = {𝑎0𝑡ℎ0 ,  𝑤ℎ𝑒𝑛   ℎ0 > 0 (𝑞𝑢𝑖𝑛𝑡𝑒𝑠𝑠𝑒𝑛𝑐𝑒) 𝑎0(𝑡𝑠 − 𝑡)ℎ0 ,  𝑤ℎ𝑒𝑛   ℎ0 < 0   (𝑝ℎ𝑎𝑛𝑡𝑜𝑚)   . (1.19) 

 
Introducing the auxiliary fields, 𝐴 and 𝐵, one can rewrite the action (1.7) as follows:  

  

 𝑆 = ∫ 𝑑4𝑥√−𝑔 [ 1𝜅2 {𝐵(𝑅 − 𝐴) + 𝑓(𝐴)} + 𝐿m𝑎𝑡𝑡𝑒𝑟]  . (1.20) 

 
One is able to eliminate 𝐵, and to obtain  

  

 𝑆 = ∫ 𝑑4𝑥√−𝑔[ 1𝜅2 {𝑓′(𝐴)(𝑅 − 𝐴) + 𝑓(𝐴)} + 𝐿m𝑎𝑡𝑡𝑒𝑟]  , (1.21) 

 

and by using the conformal transformation 𝑔𝜇𝜈 → 𝑒𝜎𝑔𝜇𝜈 (𝜎 = −ln𝑓′(𝐴)), the action 

(1.21) is rewritten as the Einstein-frame action:  
 

 𝑆𝐸 = ∫ 𝑑4𝑥√−𝑔[ 1𝜅2 (𝑅 − 32𝑔𝜌𝜎 ∂𝜌𝜎 ∂𝜎𝜎 − 𝑉(𝜎)) + 𝐿m𝑎𝑡𝑡𝑒𝑟𝜎 ]  . (1.22) 

 
Here,  

 𝑉(𝜎) = 𝑒𝜎𝐺(𝑒−𝜎) − 𝑒2𝜎𝑓(𝐺(𝑒−𝜎)) = 𝐴𝑓′(𝐴) − 𝑓(𝐴)𝑓′(𝐴)2  . (1.23) 
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The action (1.21) is called the Jordan-frame action. In the Einstein-frame action, the 
matter couples with the scalar field 𝜎. 

Lets consider MG with negative and positive powers of the curvature. The first 
gravitational alternative for dark energy [40, p. 3]: 

 

 𝑓(𝑅) = 𝑅 − 𝑐(𝑅−Λ1)𝑛 + 𝑏(𝑅 − Λ2)𝑚  . (1.24) 

 
Here we assume the coefficients 𝑛, 𝑚, 𝑐, 𝑏 > 0 but 𝑛, 𝑚 may be fractional. This 
model leads to cosmic speed-up and is consistent with Solar System tests. For the 𝑓(𝑅) 
equation (1.24) has the following form:  
 

 0 = −𝑅 + (𝑛+2)𝑐(𝑅−Λ1)𝑛 + (𝑚 − 2)𝑏(𝑅 − Λ2)𝑚  . (1.25) 

  
Especially when 𝑛 = 1 and 𝑚 = 2, one gets:  
 

 𝑅 = 𝑅± = Λ1±√Λ12+12𝑐 2  . (1.26) 

 
If 𝑐 > 0, one solution corresponds to de Sitter space and another to anti-de Sitter. 

The next theory is 𝑙𝑛𝑅 gravity. Other gravitational alternatives for dark energy [40, 
p.4, 4-47]: 
 

 𝑓(𝑅) = 𝑅 + 𝛼′ln 𝑅𝜇2 + 𝛽𝑅𝑚  . (1.27) 

 
One should note that the choice 𝑚 = 2 simplifies the model. Assuming 𝑅 is constant 
and the Ricci tensor is also covariantly constant, the equations (1.16) are:  
 

 0 = 2𝑓(𝑅) − 𝑅𝑓′(𝑅) = 𝑓(𝑅) ≡ 𝑅 + 2𝛼′ln 𝑅𝜇2 − 𝛼′. (1.28) 

 

•  If 𝛼′ > 0, 𝑓(𝑅) is a monotonically increasing function. This solution may 
correspond to inflation; 

•  if 𝛼′ < 0  , 𝑓′̃(𝑅) = 1 + 𝛼′𝑅 , the minimum of 𝑓(𝑅) , where 𝑓′̃(𝑅) = 0 , is 

given by 𝑅 = −2𝛼′; 
•  if 𝑓  (−2𝛼′) > 0, there is no solution of (1. 28); 

•  if 𝑓(−2𝛼′) = 0, there is only one solution and if 𝑓(−2𝛼′) < 0, there are 
two solutions. 
Since the square root of the curvature 𝑅 corresponds to the rate of the expansion of 
the universe, the larger solution in two solutions might correspond to the inflation in 
the early universe and the smaller one to the present accelerating universe. 
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1.3 Theory of gauge fields  

As already mentioned in the introduction, we investigate monopole-like solutions 
in the theory of Yang-Mills fields coupled to a nonlinear Dirac field. Therefore, it is 
necessary to consider historical background of fields that are characterized by gauge 
symmetry (gauge invariance) which are called gauge fields. 

The rapid development of quantum field theory over the past years is associated 
with the development of that particular type of theory - the theory of gauge fields, or 
as they are sometimes called Yang-Mills theory [48].  

It is well-known that there are 4 types of fundamental interactions in nature - 
gravitational, strong, electromagnetic and weak. Most studies show that the generally 
accepted division of the types of interaction by strength is permissible only at low 
energies. Indeed, with an increase in energy, one will be able to observe the unification 
of weak interactions and electromagnetic, strong and weak and electromagnetic 
interactions. So that, the strong, weak and electromagnetic interactions will be 
combined into one universal interaction. The universal interaction as a consequence of 
the unified theory of all interactions also must take into account the gravitational 
interaction [49, 50]. 

One of the main ideas of the theory of gauge fields is to use such a mathematical 
apparatus to combine all types of interactions of elementary particles into one [51-54] 
. These interactions have a common gauge nature, therefore, they can be described by 
the gauge symmetries of the Lie group [55, 56]. The electromagnetic interaction is 
described by the gauge symmetry U (1), the weak interaction is described by the gauge 
symmetry SU (2), and the strong interaction described by the gauge symmetry SU (3) 
[57]. Nowadays, the modern theory of the interaction of elementary particles is 
precisely based on the quantum theory of gauge fields. Let’s consider briefly the 
historical background of scientific research that preceded the discovery of these gauge 
fields. 

The unification of quantum mechanics with the theory of relativity has led to the 
completion of the construction of the foundation of QFT, the main task of which is to 
describe the interaction of elementary particles. The next step in the construction of 
gauge fields was played by quantum electrodynamics. QED was formulated in the 30s 
in the scientific works of Dirac, Pauli, Feynman and other prominent physicists [58-
61]. It is stated that Maxwell’s electrodynamics was created on the assumption that 
light, electrical and magnetic interactions are all types of the same electromagnetic 
interaction [62].  

The next step in the transition to non-Abelian gauge symmetries is construction 
the Yang-Mills fields. Yang-Mills fields were discovered in 1954 by C. Yang and his 
student R. Mills [63]. Based on the analogy of light quanta - photons, the theoretical 
physicists suggested that the weak and the strong interactions are caused by the 
exchange of energy quanta, called the quanta of the Yang - Mills fields. The quanta of 
the Yang-Mills fields are vector particles, i.e. bosons with spin 1 having zero mass. If 
one consider the weak interaction, then the quantum corresponding to the Yang-Mills 

field are 𝑊±, 𝑍0 particles. For the strong interaction, the quantum corresponding to 
the Yang-Mills field is the "glue" that holds protons and neutrons together, which is 
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called gluon [64-65]. Later it was shown that using the mechanism of spontaneous 
symmetry breaking, the Yang-Mills fields can acquire a nonzero mass [66]. 

There had arisen some difficulties in constructing the gauge theory in the 1960s. 
The problem at that time was that neither the W-bosons nor the gluons were known. In 
the 1920-1950s, the experimental base in the field of elementary particles was very 
narrow. From the list of the quanta, only the photon was known. There were many 
other particles that could be interaction quanta, but they all had mass. Due to this 
problem, the theory of gauge fields had not been fully developed. 

In 1960 based on the idea of gauge invariance, Sakurai J.J. created the universal 
theory of strong interactions [67]. In 1960-1961 Y. Ohnuki, M. Ikeda, M.  Gell-Mann 
and  S. Glashow, based on Sakurai’s theory, proposed an 8-dimensional symmetry for 
the strong interactions -SU (3) symmetry [68]. This symmetry allowed the 
classification of the strong by interacting particles and led to the discovery of new 
elementary particles. 

In 1964 M. Gell-Mann and G. Zweig independently proposed a composite quark 
model of hadrons [69, 70]. According to this model hadrons are composite particles 
consisting of quarks or antiquarks. Moreover, one of the important quantum numbers 
of quarks is color, which was introduced in 1965 in the works of the Dubna scientists 
N.N.Bogolyubov, B.V. Struminsky, A.N. Tavkhelidze and independently M. Khan and 
I. Nambu [71]. This quantum number characterizes all strongly interacting particles. 

The forces that allow quarks to be held inside hadrons have been explained by 
theoretical physicists as a result of the presence of a non-Abelian gauge gluon field 
carrying a quantum number-color. The color space is 3-dimensional and the 
corresponding Yang-Mills fields are associated with the SU (3) group. The emerging 
theory is called "Quantum chromodynamics" -the fundamental theory of nuclear forces 
[72-74]. 

Furthermore, one should accept that gauge theory is a generalization of Maxwell’s 
theory. This means that Yang-Mills fields are a generalization of the Maxwell field 
introduced to describe light. Moreover, there is a very important difference between 
the Maxwell equations and the Yang-Mills equations. This difference lies in the fact 
that the Yang - Mills equations are nonlinear, which is the result of field self-
interaction. Each gauge field can affect not only particles but also itself. In other words, 
quanta of the Yang-Mills field, unlike photons, interact with each other. 

Self-interaction of the field is determined by the structure of the corresponding 
gauge group. In the case of an electromagnetic field, which is an example of the 
simplest gauge field (Abelian gauge field), the gauge group has one parameter, 
therefore the field equations coincide with Maxwell’s equations (there is no self-
interaction in this case). Based on this, it can be argued that one of the most important 
features of quantum gauge fields that distinguishes non-Abelian gauge theory from all 
other theories, is nonlinearity. 

Yang-Mills fields can be considered as a bridge between the electromagnetic 
interaction, which describes nonself-interacting photons, and Einstein’s gravitational 
field, whose quanta - gravitons - interact with each other. That is why gravitational 
fields are also referred to quantum gauge fields. In this case, gauge transformations are 
coordinate transformations that do not affect spatial infinity. The symmetry group is 
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the Poincaré group. 
Due to the nonlinearity of the Yang-Mills equations, solving the equations as well 

as describing the models of the gauge fields is a complex process. These models are 
difficult to quantize, renormalize, reveal symmetry breaking mechanisms and lead to 
unique behavior at short distances. These equations can be solved approximately using 
perturbation theory in quantum mechanics. 

At the moment, it is also not fully understood how this nonlinearity of the equation 
leads to the observed phenomenon in strong interactions, which consists in the 
impossibility of obtaining quarks in a free state (confinement phenomenon). 

As already mentioned, the problem of gauge invariance in the 1960s was finding 
massless quanta of interaction. However, in 1961 J. Goldstone and E. Nambu showed 
that as a result of spontaneous symmetry breaking, massless particles are formed [75]. 
These particles were called the Goldstone-Nambu bosons. However, the discovery of 
these particles by J. Goldstone and E. Namou did not solve the problem of gauge 
invariance. This particle was not suitable for the role of a quantum of the gauge field 
in view of the fact that the spin of this particle is equal to 0. 

In 1967, L.D. Fadeev, V.N. Popov and B. De Witt developed a sequential scheme 
for quantizing massless Yang-Mills fields [76, 77]. In the same year S. Weinberg and 
A. Salam independently proposed a unified gauge model of weak and electromagnetic 
interactions [78, 79]. 

The construction of the theory of quantum gauge fields is associated with the 
solution of two theoretical questions: 

•  renormalizability of gauge fields; 

•  the origin of the mass of vector particles. 
P. Higgs was able to solve this problem in 1964 by proposing a mechanism of 

spontaneous breaking of local gauge symmetry, which made it possible to impart mass 
to the quanta of gauge fields and ensure renormalizability of the theory of mass fields 
[80-82]. The Higgs mechanism makes it possible to assign masses to vector gauge 
fields without violating the local gauge invariance of the theory. 

The next step was to introduce the Higgs field, which could cause spontaneous 

symmetry breaking. Initially, 𝑊±  and  𝑍0  quanta have no mass, but symmetry 

breaking leads to the fact that some Higgs particles merge with 𝑊± and 𝑍0 particles, 

giving them mass. Salam argued that the 𝑊±  and  𝑍0  -particles “eat” the Higgs 
particles in order to gain weight. Photons do not participate in this process and remain 
massless. The quantum of the Higgs field was called Higgs boson. In fact, this 
mechanism for the acquisition of mass by particles was introduced earlier by Ernst 
Stueckelberg in 1957 [83]. Higgs’ merit lies in the assumption that the mass of a vector 
boson appears as a result of the interaction with a scalar field. In the equations of 
motion, it was necessary to take into account the mass of these particles. However, in 
this case, these equations will be non-invariant with respect to local gauge symmetries. 

The discovery of 𝑊±  and  𝑍0  particles in 1983 meant the triumph of the 
Weinberg - Salam theory. The theory of the electroweak interactions has decisively 
influenced the development of physics in the following years. For their outstanding 
achievements, Weinberg and Salam were awarded the 1979 Nobel Prize in Physics, 
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sharing it with Sheldon Glashow of Harvard University, who had earlier laid the 
foundations of this theory. Physicists were interested in this model also because of the 
possibility of a further unification of the fundamental interactions, but there is so far 
no observational evidence for such a theory.  

Yang-Mills fields have a peculiar geometric interpretation. This geometric 
interpretation is constructed by analogy with the Christofell symbols in the theory of 
gravitation. According to this, the Yang-Mills fields describe the parallel transport in 
the charge space and determine the curvature of this space. 

The next important step in the construction of gauge fields is to combine the 
strong and electromagnetic interactions. Strong and electromagnetic fields have the 
following differences: the electromagnetic interaction has one type of charge, and the 
strong interactions have 3 colors. The gluon has color quantum numbers, but the photon 
is electrically neutral particle. 

This difference has led to other remarkable properties of Yang-Mills fields, 
called "asymptotic freedom" and "confinement". This discovery is associated with the 
names of D. Gross, F. Wilczek and  D. Politzer [84-86]. 

Each interaction is characterized by a coupling constant that determines its 
strength. However, the study of interactions at ever higher energies showed that the 
coupling constant depend on energy. The decrease in the constant of the strong 
interactions with increasing energy is a consequence of the anti-shielding of the strong 
(color) charge, leading to asymptotic freedom. The constant of the electromagnetic 
interactions due to shielding increases with increasing energy. 

The phenomenon of "asymptotic freedom" is that strong interactions weaken at 
small distances. This phenomenon became the basis of the theory of strong interactions. 
The phenomenon of "confinement" consists in the fact that when quarks move away at 
distances of more than 10-13 cm, their connection will increase. As one can see, 
electromagnetic and weak interactions, when viewed superficially, are very different 
in nature. 

However, S. Weinberg and A. Salam showed that in reality these fields are two 
types of a single - the so-called electroweak interaction of leptons and quarks, carried 
out through the exchange of four particles - massless photons (electromagnetic 
interaction) and heavy vector bosons (weak interaction). Thus, one can conclude that, 
based on the Yang-Mills theory, two theories of the Standard Model of elementary 
particle physics were built: QCD (theory of strong interactions) based on the SU (3) 
group and the theory of electroweak interactions based on the SU (2) group. 

Since the Standard Model and the theory of gravity are based on the same 
principle (both are the theory of gauge fields), it is natural to think that both theories 
can be combined in the form of a unified theory of all fundamental interactions. This 
kind of unification does indeed occur in string theory. However, quantum string theory 
has not been built yet. 

The Standard Model was unable to lead to a unified field theory. It does not 
include the theory of gravitation, which began the geometrization of physics at the 
beginning of the 20th century and does not describe dark matter and dark energy. The 
subsequently proposed string theory was designed to fill this gap. For great 
achievements in the field of gauge theory, in 1999 M. Veltman and G. Hooft and in 
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2004 D. Gross, F. Wilczek and D. Politzer were awarded the Nobel Prize. 
After a brief historical overview, we turn to the mathematical description of the 

Yang-Mills field. In QED [87], gauge invariance is satisfied under transformations of 
the Abelian group. Such phase transformations form the U(1) group. The simplicity of 
quantum electrodynamics is due to the fact that in the U(1) group any two 
transformations commute with each other. 

QED combines the theory of interacting fields: the vector electromagnetic field 𝐴𝜇 = (𝐴0(𝑥), 𝐴(𝑥)) and the Dirac field of electrons-positrons Ψ𝛼(𝑥). Later, Yang 

and Mills generalized U (1) -symmetry to the non-Abelian case, thus theories 
possessing gauge invariance under the transformations of the non-Abelian Yang-Mills 
group. For a non-Abelian group SU(N), one write down, by analogy with quantum 
electrodynamics, the covariant derivative as follows:  
 

 𝐷̂𝜇 → ∂𝜇 − 𝑖𝑔𝐴𝜇𝑎𝑇𝑎, (1.29) 

 
where 𝑔 is the coupling constant, similar to the charge in QED, and the 𝑇𝑎 are the 
generators of the SU (N) group. 

The main objects that are considered in gauge theories are Yang-Mills potentials. 
These potentials are a set of vector quantities (fields) 𝐴𝜇𝑎(𝑥) (where  𝑎 = 1,2, . . . , 𝑁; 𝜇 = 0,1,2,3). The vector field 𝐴𝜇 is defined as follows:  

 
 𝐴𝜇 = 𝑔𝑇𝑎𝐴𝜇𝑎. (1.30) 

 
The field strength tensor has the form:  
 

 𝐹𝜇𝜈𝑎 = ∂𝜇𝐴𝜈𝑎 − ∂𝜈𝐴𝜇𝑎 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐 , (1.31) 

 

where 𝑓𝑎𝑏𝑐 are the structure constants of the gauge group.  Maxwell’s equations have 
the form: ∂𝜇𝐹𝜇𝑘 = −𝐽𝑘 , where 𝐽𝑘 = 𝑒Ψ̅𝛾𝜅Ψ  with source and without source ∂𝜇𝐹𝜇𝑘 = 0, whereas the Yang-Mills equations have the form:  

 

 𝐷̂𝜇𝐹𝑎𝜇𝜈 = 𝐽𝑎𝑘 , (1.32) 

where  
 

 𝐽𝑎𝑘 = −𝑔Ψ̅𝑡𝑎𝛾𝜅Ψ, (1.33) 
 

with source, 

 𝐷̂𝜇𝐹𝑎𝜇𝜈 = 0, (1.34) 

 
without source. 

It is important to note that the Lagrangian of a non-Abelian gauge group, in 
contrast to an Abelian one, contains terms of 𝐴𝜇  of higher orders, which is a 

consequence of the nonlinearity of the Yang-Mills equations. 
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1.3.1 Problem of the mass gap  

The second part of the research is partly connected with the concept of the mass gap, 
therefore this section devoted to this concept. The first thing that needs to be said is 
that the problem of the existence of the mass gap and Yang-Mills theory is one of 7 
challenging unsolved Millennium Prize Problems in mathematics and physics. There 
is a list of the relevant, complicated and unsolved millennium problems in science 
which were established by the Clay Mathematics Institute in 2000 [88]: 

1. Birch and Swinnerton-Dyer conjecture; 
2.  Hodge conjecture; 
3.  Navier–Stokes existence and smoothness;  
4.  P versus NP problem; 
5.  Poincaré conjecture (had been solved); 
6.  Riemann hypothesis; 
7. Yang–Mills theory and mass gap existence. 

If this problem is successfully solved, the Clay Mathematics Institute will reward the 
winner with a prize of $1,000,000. The difficulty of solving this problem lies in the 
fact that it is necessary to prove that any compact gauge group  G  includes a non-
trivial quantum theory of Yang-Mills of R4 and has a positive mass gap Δ > 0 [89]. 

As discussed in the previous section, half a century ago, Yang and Mills  
introduced astonishing theory that can describe elementary particles. Its predictions 
have been tested empirically many times but the mathematical representation is not 
incomprehensible. Yang-Mills theory is a gauge field theory based on SU(N) group. 
The theory of Yang-Mills can be successfully used with a quantum property of 
elementary particles - the mass gap. The mass gap Δ is the mass of the least massive 
particle predicted by this theory. As an example, consider the gauge group G=SU(3)-
the theory of  the strong interactions [89, p. 2]. To solve this problem, the winner must 
prove that glueball-quanta of the strong interactions have a lower mass boundary and, 
therefore, cannot have any lighter values. At a deeper level, it means that there are no 
massless particles predicted by the theory (except the vacuum state). The mass gap has 
been discovered experimentally and confirmed through computer modeling, however 
it is not understood theoretically. 

The history of the development of the mass gap concept is inseparably connected 
with the modern quantum gauge theory of the strong interactions of elementary 
particles - Quantum Chromodynamics (QCD). QCD was formulated by analogy with  

QED. A common name for all elementary particles involved in the strong interactions 
is hadrons. 

In QED, the electromagnetic interactions of charged particles are described and 
transmitted by carrier particles – the massless photons. By analogy with QED, in QCD, 
the carriers of the strong interactions are gluons. There is only one type of electric 
charge in QED, which can be positive or negative. Unlike QED, where the exchanged 
photons are electrically neutral, QCD gluons also carry “color charges”. It is well-
known, that hadrons as compound particles are composed of quarks and antiquarks. 
The quark model of elementary particles was independently postulated in 1964 by 
American physicists Murray Gel-Mann and George Zweig [90, 91]. 
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In 1965, N. N. Bogolyubov, M. Khan, E. Nambu and others independently 
postulated that quarks have additional degrees of freedom of the SU (3) gauge group, 
later called "color charges" [92]. Quarks are described by three different types of color 
charge, each of which can be colored or anti-colored. The three types of charge are 
called red, green and blue by analogy with the primary colors of light, although there 
is no connection with color in the general case. 

Thus, quarks interact through the strong interactions, exchanging gluons. A quark 
of one color can transform into a quark of different colors by emitting a colored gluon. 
Moreover, in order to describe all possible interactions between the three colors of 
quarks, there should be eight gluons, each of which usually carries a mixture of color 
and anti-color of different type. Therefore, this gauge group has 8 generators, each of 
which corresponds to a quantum of the vector gauge field - gluon. Since gluons carry 
color, they can interact with each other, which is the main difference between strong 
interaction and electromagnetic one. 

QED obeys the inverse - square law, that is, it describes a force that can propagate 
in space and becomes weaker as the distance between two charges increases. In QCD, 
however, interactions between gluons emitted by color charges prevent these charges 
from flying apart. This also explains confinement of quarks. 

At that moment, there is no doubt that confinement, as well as other dynamic 
effects, such as spontaneous / dynamic symmetry breaking, bound state problems, etc., 
are not available with perturbation methods, and therefore they are very important non-
perturbative effects [93]. In turn, this means that for their study it is necessary to find 
non-perturbative solutions, methods and approaches. This is especially necessary 
because the aforementioned non-perturbative effects are related to low-energy / 
impulsive (long distance) phenomena and, as well known, perturbation methods 
usually do not apply to them. 

Using perturbation techniques, it was predicted that QCD correctly describes  

hadrons interactions at higher energies and momentum transfers 𝑄2 ≫ 𝑚𝜌2 ≈0.6 𝐺𝑒𝑉2  [93, p.4]. However, standard perturbation methods do not work when 
applied to QCD at low-energy. Also the discovery of the Higgs boson does not solve 
the problem of masses arising from the nonperturbative behavior of QCD. Therefore, 
the introduction of the "mass gap" is a new method pioneered by Arthur Jaffe and 
Edward Witten. This method is based on showing that a mass scale parameter (mass 
gap) is needed to explain the QCD mass spectrum instead of other massive particles. 
Thus, the mass gap is the energy gap between the lowest and the vacuum state in the 
quantum Yang-Mills theory. It is responsible for the large-scale structure of the QCD 
ground state and, therefore, also for its non-perturbative phenomena at low energies. 
After all, each mass of a hadron must be expressed in terms of renormalized mass gap, 
i.e., 𝑀 ℎ =  𝑐𝑜𝑛𝑠𝑡ℎ  ×  ∆, where h determines any hadron, аnd  𝑐𝑜𝑛𝑠𝑡ℎ  - corresponds 
to a dimensionless constant. In other words, the spectrum of hadrons must depend on 
the mass gap.  

In the chapter 4, we will present that the energy spectrum of monopole-like 
solutions possesses a global minimum, which can be interpreted as a mass gap, whose 
appearance is caused by the nonlinear spinor fields. We wish to emphasize that the 
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mass gap that would be obtained in the present work can be considered as the QCD 
effect in non-QCD theory. The obtained results, then may try to explain the nature of 
the mass gap in a more complicated situation in QCD. 

Of course, there are many big questions in gauge theory that have not yet been 
answered. However, the amazing beauty of this theory and the experimental 
discoveries that have been made in recent years allow us to hope that in the near future 
answers to these questions will be found. 
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2 BRANES IN MULTIDIMENSIONAL SPACE-TIME 

 

2.1 Brief overview of the Branes  

In this chapter, we will consider flat-symmetric solutions of branes in −𝛼𝑅𝑛 
modified theory of gravity. There are articles [94-99] where one can follow some 
searches of thick brane solutions in 5 and 6-dimensional space-time. In the current 
research, we will investigate thick branes in multidimensional space-time. 

This chapter explains a new approach to the problem of non-observability of extra 
dimensions, which is called the «brane world scenario», see Figure 2.1. This approach 
is very different from the traditional compactification approach. As we mentioned 
before, at this approach, particles related to electromagnetic, weak and strong fields are 
bounded by some hypersurface, which is the brane, which is embedded in a bulk - some 
multidimensional space. 

 
 
 
 
 
 
 
 
 
 
 

 
 
              

 
 
 

Figure 2.1 − Brane world scenario 
 

The Universe is thought to be such a brane-like object. This idea was first 
phenomenologically formulated in [100-104] and was confirmed in string theory. In 
the «brane world scenario», the limit on the size of additional dimensions becomes 
weaker. The idea of a prototype world on the brane appeared quite a long time ago. 
Now, the concept of "brane model" indicates different approaches to solve some 
fundamental problems of high-energy physics.  𝒟 − branes are a very important objects in string theory. According to string 

theory a 𝒟 − brane is attached to the ends of strings and can move in some enveloping 
space, see Figure 2.2. 
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Figure 2.2 – D2-brane in string theory 
 

Currently, 𝒟4 - branes (the so-called brane world scenario) are actively used to 
solve some problems in high energy physics: the problem of the hierarchy of fermionic 
masses , the nature of dark energy and dark matter [105, 106]. 

In this work we will investigate this issue and show that regular vacuum brane 
solutions can exist in multidimensional modified theories of gravity. As far as we 
know, for getting all these solutions require the presence of matter. And this is 
physically understandable, since in GR, regular solutions almost always can be 
obtained in the presence of some sources. Such examples can be solutions with scalar, 
vector and spinor fields. The natural question that arises in this regard is the question 
of the presence or absence of vacuum regular brane solutions. 

From a realistic point of view, the brane should has a thickness. It is also widely 
believed that the most fundamental theory would have a minimum length scale. In 
some cases, the influence of the thickness of the brane may be important. The inclusion 
of the thickness of the brane gives us new possibilities and new problems. In many 
multidimensional field theories related to gravity,  there are solutions to topological 
defects. They have led to a richer variety of worlds on the brane. 

We will now give our precise definition of thick branes to avoid possible problems 
associated with possible differences in terminology. Our definition is based on the 
following form of multidimensional metric: for five-dimensional solution problems 
with a metric [45, p.8]: 

 

 𝑑𝑠2 = 𝑎2(𝑦)𝑔𝜇𝜈𝑑𝑥𝜇 𝑑𝑥𝜈 − 𝑑𝑦2 (2.1) 

 
where −∞ < 𝑦 < ∞ - additional dimension coordinate. Four-dimensional 𝑔𝜇𝜈 - it is 

Minkowski function or de Sitter spacetime (or anti-de Sitter), 𝑎(𝑦) - warp factor or 
the deformation function,  which is regular, has a maximum on the brane and falls 
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quickly away from the brane. Typical wrap factor behavior in thin and thick branes is 
shown in Figure 2.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 2.3 − The warp factor 𝑎(𝑦) of  the thin and the thick brane solutions. 
 

It was shown in [98, 99] that in a 4,5 and 6-dimensional space-time there can exist 
a brane, which is a regular vacuum solution. In this study, we want to show that Branes 
with codim =1 can be obtained as regular vacuum solutions in modified theories of 
gravity. This means that the presence of matter is not necessary for the construction of 
such Branes. 

 
2.2 Branes in multidimentional space-time within the framework of 𝓕(𝑹) 

modified theory of gravity  

In this section, we investigate Branes in multidimentional space-time within the 
framework of 𝓕(𝑹) modified theory of gravity  using the methods of solving for 
thick branes that was considered in the articles [98, 99].  

Let’s consider Branes with codim = 1 in multidimensional space-time with 
dimension N. The corresponding gravitational action can be represented in the 
following form:  

 𝑆 = ∫ 𝑑𝑁𝑥√−𝐺[−𝑅 + 𝑓(𝑅)], (2.2) 

 
where 𝑓(𝑅)  is an arbitrary function of the scalar curvature 𝑅 ; 𝐺𝐴𝐵 is the 
multidimensional metric. 

Variation of action (2.2) with respect to the 𝑁-dimensional metric 𝐺𝐴𝐵 give us 
the equations of modified gravity:  

 

 𝑅𝐴𝐵 − 12 𝛿𝐴𝐵𝑅 = 𝑇̂𝐴𝐵, (2.3) 

 
where are capital Latin letters 𝐴, 𝐵, . . . = 0,1, . . . , 𝑁 − 2,𝑁; the right side is determined 
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in the following way:  
 

 𝑇̂𝐴𝐵 = −[(∂𝑓∂𝑅)𝑅𝐴𝐵 − 12 𝛿𝐴𝐵𝑓 + (𝛿𝐴𝐵𝑔𝐿𝑀 − 𝛿𝐴𝐿𝑔𝐵𝑀) (∂𝑓∂𝑅);𝐿;𝑀], (2.4) 

 

where the semicolon defines the covariant derivative and 𝑇̂𝐴𝐵 denotes the source of 
effective geometric matter. Here, I would like to highlite that the equations of motion  
for modified theory of gravity (2.3) have a structure that coincides with the general 
equations of relativity with the «source» of the gravitational field is the effective 
energy-momentum tensor (2.4). 
The Ricci tensor is defined as: 

  

 𝑅𝐴𝐵 = ∂Γ𝐴𝐵𝐿∂𝑥𝐿 − ∂Γ𝐴𝐿𝐿∂𝑥𝐵 + Γ𝐴𝐵𝐿 Γ𝐿𝑀𝑀 − Γ𝐴𝐿𝑀Γ𝐵𝑀𝐿 , (2.5) 

 
and Ricci scalar:  

 𝑅 = 𝑔𝐴𝐵𝑅𝐴𝐵 . (2.6) 
 
As was mentioned at the beginning, we explore 𝑓(𝑅) gravity in the following form:  
 

 𝑓(𝑅) = −𝛼𝑅𝑛, (2.7) 
 

where 𝛼 > 0 and 𝑛 some constants.  

According to some research, in order to study the present accelerated 

expansion of the Universe, there are some ranges of 𝒏 that do not contradict the 

observational cosmological data. So, it seems logically to consider these values of 𝑛 
for Branes. 
In this work, we are looking for Branes with codim = 1 in the N -dimensional space, 
so the metric has the form: 
  

 𝑑𝑠2 = 𝑒2𝛽(𝑥𝑁)[(𝑑𝑥0)2 − (𝑑𝑥1)2−. . . −(𝑑𝑥𝑁−1)2] − (𝑑𝑥𝑁)2, (2.8) 
 
The metric (2.8) has the following components of the Ricci tensor, which were 
calculated by using formula (2.5):  
 

 𝑅00 = 𝑒2𝛽(𝛽′′ +𝑁𝛽′2), (2.9) 
  

 𝑅𝐴𝐴 = −𝑒2𝛽(𝛽′′ +𝑁𝛽′2), 𝐴 = 1,2, . . . , 𝑁 − 1, (2.10) 
  

 𝑅𝑁𝑁 = −𝑁(𝛽′′ + 𝛽′2). (2.11) 
 

Here ′ means the derivative with respect to 𝑥𝑁. We also take into account that the 
Ricci scalar looks like:  
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 𝑅 = 2𝑁𝛽′′ +𝑁(𝑁 + 1)𝛽′2. (2.12) 
 

We will use the following notation values: 𝑓𝑅 = 𝜕𝑓(𝑅)𝜕𝑅 , 𝑓𝑅𝑅 = 𝜕2𝑓(𝑅)𝜕𝑅2 , 𝑓𝑅𝑅𝑅 = 𝜕3𝑓(𝑅)𝜕𝑅3 . 

 

Let’s get the equations of modified gravity for the components of 𝐴, 𝐵 = (
00). 

Substitution of the metric (2.8) and the components of the Ricci tensor (2.9)-(2.11) into 
the equations of modified gravity (2.3), give us: 

1) Left side of the equation of (2.3) is: 
 𝑅00 − 12𝛿00𝑅 = 𝛽′′ +𝑁𝛽′2 − 12 (2𝑁𝛽′′ +𝑁(𝑁 + 1)𝛽′2)= 𝛽′′ +𝑁𝛽′2 −𝑁𝛽′′ −𝑁(𝑁 + 1)2 𝛽′2 = (1 − 𝑁)𝛽′′ +𝑁(1 − 𝑁)2 𝛽′2. 

 

2) Right side of the equation of (2.3) is: 
 −𝑓𝑅𝑅00 + 12 𝛿00𝑓 − 𝛿00𝑔𝐿𝑀𝑓𝑅𝑅𝑅 𝜕𝑅𝜕𝑥𝐿 𝜕𝑅𝜕𝑥𝑀 − 𝛿00𝑔𝐿𝑀𝑓𝑅𝑅 𝜕𝜕𝑥𝐿 ( 𝜕𝑅𝜕𝑥𝑀) + 𝛿00𝑔𝐿𝑀𝑓𝑅𝑅Г𝐿𝑀𝐾 𝜕𝑅𝜕𝑥𝐾 =− 𝛽′′𝑓𝑅 −𝑁𝛽′2𝑓𝑅 + 12𝑓 − (𝑁 − 1)𝛽′[2𝑁𝛽′′′ + 2(𝑁2 +𝑁)𝛽′𝛽′′]𝑓𝑅𝑅 − 4𝑁2𝑓𝑅𝑅𝑅 𝛽′′′2 −8𝑁2(𝑁 + 1)𝛽′𝛽′′𝛽′′′𝑓𝑅𝑅𝑅 − 4(𝑁2 +𝑁)2𝛽′2𝛽′′2𝑓𝑅𝑅𝑅 − 2𝑁𝛽′′′′𝑓𝑅𝑅 − 2𝑁(𝑁 +1)𝛽′′2𝑓𝑅𝑅 − 2𝑁(𝑁 + 1)𝛽′𝛽′′′𝑓𝑅𝑅 =−(𝛽′′ +𝑁𝛽′2)𝑓𝑅 + 12𝑓 +[4𝑁2𝛽′𝛽′′′ + 2𝑁(𝑁2 − 1)𝛽′2𝛽′′ + 2𝑁𝛽′′′′ + 2𝑁(𝑁 + 1)𝛽′′2]𝑓𝑅𝑅 +[4𝑁2𝛽′′′2 + 8𝑁2(𝑁 + 1)𝛽′𝛽′′𝛽′′′ + 4𝑁2(𝑁 + 1)2𝛽′2𝛽′′2]𝑓𝑅𝑅𝑅 . = 

 
The final result after collecting the left and right sides of the equation (2.3) give us the 
following equation: 

 

 

(1 − 𝑁)𝛽′′ + 𝑁(1−𝑁)2 𝛽′2 = −(𝛽′′ +𝑁𝛽′2)𝑓𝑅 + 12𝑓 +[4𝑁2𝛽′𝛽′′′ + 2𝑁(𝑁2 − 1)𝛽′2𝛽′′ + 2𝑁𝛽′′′′ + 2𝑁(𝑁 + 1)𝛽′′2]𝑓𝑅𝑅 +[4𝑁2𝛽′′′2 + 8𝑁2(𝑁 + 1)𝛽′𝛽′′𝛽′′′ + 4𝑁2(𝑁 + 1)2𝛽′2𝛽′′2]𝑓𝑅𝑅𝑅.  (2.13) 

Now, let’s get the equations of modified gravity for the components 𝐴, 𝐵 = (
𝑁𝑁). 

1) Left side of the equation of (2.3) is: 
 𝑅𝑁𝑁 − 12𝛿𝑁𝑁𝑅 = 𝑁𝛽′′ −𝑁𝛽′2 −𝑁𝛽′′ − (𝑁2 −𝑁)2 𝛽′2 = 𝑁(1 − 𝑁)2 𝛽′2. 

 
2) Right side of the equation of (2.3) is : 
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−𝑓𝑅𝑅𝑁𝑁 + 12𝛿𝑁𝑁𝑓 − 𝛿𝑁𝑁𝑔𝐿𝑀𝑓𝑅𝑅𝑅 𝜕𝑅𝜕𝑥𝐿 𝜕𝑅𝜕𝑥𝑀 − 𝛿𝑁𝑁𝑔𝐿𝑀𝑓𝑅𝑅 𝜕𝜕𝑥𝐿 ( 𝜕𝑅𝜕𝑥𝑀)+ 𝛿𝑁𝑁𝑔𝐿𝑀𝑓𝑅𝑅Г𝐿𝑀𝐾 𝜕𝑅𝜕𝑥𝐾= −𝑁𝛽′′𝑓𝑅 −𝑁𝛽′2𝑓𝑅 + 12𝑓 + 2𝑁𝛽′𝛽′′′𝑓𝑅𝑅 + 2(𝑁2 +𝑁)𝛽′2𝛽′′𝑓𝑅𝑅+ 2𝑁(𝑁 − 1)𝛽′𝛽′′′𝑓𝑅𝑅 + 2(𝑁 − 1)(𝑁2 +𝑁)𝛽′2𝛽′′𝑓𝑅𝑅= −𝑁(𝛽′′ + 𝛽′2)𝑓𝑅 + 12𝑓 + 2𝑁2𝛽′[𝛽′′′ + (𝑁 + 1)𝛽′𝛽′′]𝑓𝑅𝑅 . 
 
The final result after collecting the left and right sides of the equation (2.3) give us the 
following equation: 
 

 
𝑁(1−𝑁)2 𝛽′2 = −𝑁(𝛽′′ + 𝛽′2)𝑓𝑅 + 12 𝑓 + 2𝑁2𝛽′[𝛽′′′ + (𝑁 + 1)𝛽′𝛽′′]𝑓𝑅𝑅. (2.14) 

 
Taking into account (2.7) and (2.12) one can write:  
 

 𝑓𝑅 = −𝛼𝑛[2𝑁𝛽′′ +𝑁(𝑁 + 1)𝛽′2]𝑛−1,         (2.15) 
 

 𝑓𝑅𝑅 = −𝛼𝑛(𝑛 − 1)[2𝑁𝛽′′ +𝑁(𝑁 + 1)𝛽′2]𝑛−2, (2.16) 
 

 𝑓𝑅𝑅𝑅 = −𝛼𝑛(𝑛 − 1)(𝑛 − 2)[2𝑁𝛽′′ +𝑁(𝑁 + 1)𝛽′2]𝑛−3. (2.17) 
 
Consider equation (2.14), since, according to the Bianchi identity, equation (2.13) is a 
consequence of equation (2.14). Dividing the equation (2.14) by the coefficient of 𝛽′′′, 
we obtain the following equation: 

 

 
𝛽′′′ − 1𝑛 𝛽′′2𝛽′ + (𝑁−1)(1+𝑁−2𝑛)4𝑛(𝑛−1) 𝛽′3 + 2(𝑁+1)(𝑛2+1)−𝑛(3𝑁+5)2𝑛(𝑛−1) 𝛽′𝛽′′ −𝑁−14𝛼𝑁𝑛(𝑛−1) [𝑁(𝑁 + 1)𝛽′2 + 2𝑁𝛽′′]2−𝑛𝛽′ = 0.  (2.18) 

 
The solution at the origin, aligned with the center of Branes, we seek in the form  

 𝛽[𝑥𝑁] ≈ 𝛽0 + 𝛾(𝑥𝑁)𝛿+. . ., (2.19) 
 

where 𝛾, 𝛿 are some constants. Without loss of generality, we can set 𝛽0 = 0 which 

corresponds to the redefinition of coordinates 𝑒𝛽0𝑥𝐴 → 𝑥𝐴, 𝐴 = 1,2,… . 

Since in equation (2.18) there is a third derivative with respect to 𝑥𝑁, then in order 

for this term to be finite, it is necessary to put 𝛿 > 3. The leading terms in this equation 

are the terms with 𝛽′′′ and 
𝛽′′2𝛽′ . 

Then, substituting expansion (2.19) into (2.18) and equating to zero the coefficient 

at (𝑥𝑁)𝛿−3, we obtain the following expression for the parameter 𝛿: 
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1𝑛 (𝛿 − 1) = (𝛿 − 2). (2.20) 

 
After simple calculations, we obtain the condition for 𝛿: 
  

 𝛿 = 2𝑛−1𝑛−1 . (2.21) 

 
Also, to ensure the regularity of the equation  (2.18) it is necessary that 𝛽′′′ would be 

finite at 𝑥𝑁 → 0, that leads to 𝛿 > 3. As a result, we have an interesting result: the 

relationship between parameters 𝛿 and 𝑛 does not depend on the dimensions of the 
enclosing space. 

Considering this condition and (2.21) we find that solutions can exist only when 𝑛 is in the following range of values:  
 

 𝑛 < 2. (2.22) 
 
The asymptotic behaviour is described in the form:  

 

 𝛽 ≈ 𝑘|𝑥𝑁|, (2.23) 
 
and after substitution in (2.18) we obtain:  

 𝑘 = {[𝑁(𝑁+1)] 12(𝑛−1)𝛼𝑁(𝑁−2𝑛+1) }. (2.24) 

2.3 Presentation of results 

Apparently, it is impossible to obtain an analytical solution to equation (2.18) with 
constraints (2.19) and (2.21) describing Brane with codim = 1. Numerical investigation 
of this equation for an arbitrary dimension is also impossible; therefore, we will 
perform a numerical investigation for some dimensions. It is obvious that the solutions 
with an even values of the parameter 𝛿 = 2𝑝  (where 𝑝  is an integer) are even 

functions with respect to the variable 𝑥𝑁. The independent parameters for equation 
(2.18) that determine the solution are the dimension of the space 𝑁, the exponent 𝑛, 

and the quantity 𝛾, which determines the value of the function 𝛽 at the center of the 

brane. Much more complex solutions exist for an arbitrary value of the exponent 𝑛: 

• Numerical analysis showed that for the exponent 𝑛 = (2𝑝 + 1)/(2𝑞 + 1) , 

where p, q are integers, a regular solution exists for 𝑥𝑁 > 0, and for 𝑥𝑁 < 0  the 
solution becomes singular. Our analysis showed that in this case regular solutions can 
exist for 𝛾 < 0. In this case, one can obtain a regular brane solutions by matching these 

regular solutions for 𝑥𝑁 = 0. This can be done, since with our choice of the exponent 𝛿, the value of the function 𝛽(0), as well as its first and second derivatives at the center 

of the brane, are equal to zero: 𝛽(0) = 𝛽′(0) = 𝛽′′(0) = 0. 

• A much more difficult task is to construct solutions for irrational numbers 𝛿. 

The fact is that for 𝑥𝑁 < 0, a situation may arise near the origin of coordinates when 
it will be necessary to calculate the degree of some negative number. By highlighting 
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the minus sign in front of such a number, the problem arises of calculating the number (−1)𝛿  for an irrational number 𝛿 . As you know, (−1)𝛿 = exp(𝑖𝑚𝜋𝛿) =cos(𝑚𝜋𝛿) + 𝑖sin(𝑚𝜋𝛿), 𝑚 is an integer. In the general case, this number becomes 
complex, and in this case the solutions, apparently, do not exist. 

The investigated solutions depend on the following parameters: the exponent 𝛿 

and the constant 𝛾 in expression (2.19) for the behavior of the function 𝛽(𝑥𝑁) near 

the origin 𝑥𝑁 = 0 ; constants 𝛼  and 𝑛  from expression (2.7) for the form of the 

modified theory of gravity, and 𝛼 is some parameter expressed in terms of the new 
fundamental length in the modified gravity of this type, and 𝑛 determines the type of 
modified gravity. 

• Figure 2.4 shows the dependence of the metric function 𝛽′(𝑥𝑁)   on the 

exponent 𝛿 in expression (2.19).  

• Figure 2.5 shows the phase portrait of equation (2.18), that is, the dependence 𝛽′′(𝛽′).  

• Figure 2.6 shows the dependence of the energy density 𝑇00  on the 𝑥𝑁 
coordinate. 

• Figures 2.4 and 2.5 demonstrate the asymptotic AdS behavior of the metric 

function 𝛽: 𝛽′(𝑥𝑁 → ∞) → 𝑘,  where the constant 𝑘 is defined by expression (2.24). 

• Figures 2.7 – 2.9 show, respectively, the metric function 𝛽′(𝑥𝑁), the phase 

portrait 𝛽′′(𝛽′) and the energy density 𝑇00 for different 𝛾. 

• Figures 2.10 – 2.12 show, respectively, the metric function 𝛽′(𝑥𝑁), the phase 

portrait 𝛽′′(𝛽′) and the energy density 𝑇00 for different 𝛼. 

• Figures 2.13 – 2.15 show, respectively, the metric function 𝛽′(𝑥𝑁), the phase 

portrait 𝛽′′(𝛽′) and the energy density 𝑇00 for different 𝑁. 
Analyzing these results, the following conclusions can be drawn: 

– As the parameter 𝛼 increases, saturation occurs: all curves tend to a certain 
limit. This result can be easily explained: the fact is that it is seen from equation (2.18) 
that the last term in this equation tends to zero with increasing 𝛼, which leads to the 
equation 

 𝛽′′′ − 1𝑛 𝛽′′2𝛽′ + (𝑁−1)(1+𝑁−2𝑛)4𝑛(𝑛−1) 𝛽′3 + 2(𝑁+1)(𝑛2+1)−𝑛(3𝑁+5)2𝑛(𝑛−1) 𝛽′𝛽′′ = 0, (2.25) 

not containing the parameter 𝛼. This equation gives the solution to which the solutions 

of equation (2.18) tend with increasing 𝛼. 
– With an increase in the value of the parameter n, there is also saturation: all 

curves tend to a certain limit. This can be explained in a similar way: as 𝑛 → ∞ , 
equation (2.18) takes on the following simple form 

 𝛽′′′ + (𝑁 + 1)𝛽′𝛽′′ = 0, (2.26) 
 

which solution is 

 𝛽 = 𝑐3 + 2lncosh√𝑐1𝑁+12 (𝑥𝑁+𝑐2)𝑁+1 , (2.27) 

 
and it is an approximate solution of equation (2.18) for large n. 
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Figure 2.4 − Behaviour of the function 𝛽′(𝑥𝑁) depending on different values of the 

parameter 𝛿. For curves 1, 2, 3, 4, respectively, 𝛿 = 4, 6, 8, 10, where 𝑓(𝑅) =−𝛼𝑅𝑛: n=
32,54,76,98; N=3; 𝛼 = 1; 𝛾 = 1 

 
 
 
 
 

 
  
 
 

 
 
 
   
 
 
 
 

 
 

Figure 2.5 − Phase portrait depending on different values of the parameter 𝛿. For 

curves 1, 2, 3, 4, respectively, 𝛿 = 4,6,8,10, where 𝑓(𝑅) = −𝛼𝑅𝑛: n=
32,54,76,98; N=3; 𝛼 = 1; 𝛾 = 1 
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Figure 2.6 − Effective energy density 𝑇00 depending on different values of the 

parameter 𝛿. For curves 1-4, respectively, 𝛿 = 4,6,8,10; n=
32,54,76,98; N=3;𝛼 = 1; 𝛾 = 1 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 − Behaviour of the function 𝛽′(𝑥𝑁) depending on different values of the 

parameter 𝛿. For curves 1-6 respectively, 𝛿 = 0.1,1.08,2.06,3.04,4.02,5.0; 𝑛 = 54; 
N=3;𝛼 = 1; 𝛾 = 6 
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Figure 2.8 − Phase portrait depending on different values of the parameter 𝛿. For 

curves 1-6 respectively,𝛿 = 0.1,1.08,2.06,3.04,4.02,5.0;𝑛 = 54;N=3,𝛼 = 1, 𝛾 = 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.9 − Effective energy density 𝑇00depending on different values of the 

parameter 𝛿. For curves 1-6 respectively, 𝛿 = 0.1,1.08,2.06,3.04,4.02,5.0; 𝑛 = 54; 
N=3,𝛼 = 1, 𝛾 = 6 
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Figure 2.10 − Behaviour of the function 𝛽′(𝑥𝑁) depending on different values of 

the parameter 𝛼. For curves 1-6 respectively, 𝛼 = 1,2,3,4,5,6; 𝑛 = 54; N=3,𝛿 =6, 𝛾 = 1 
  
  
 
 
   
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 2.11 − Phase portrait depending on different values of the parameter 𝛼. For 

curves 1-6 respectively, 𝛼 = 1,2,3,4,5,6; 𝑛 = 54; N=3,𝛿 = 6, 𝛾 = 1 
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Figure 2.12−Effective energy density 𝑇00 depending on different values of the 

parameter 𝛼.For curves 1-6 respectively, 𝛼 = 1, 2, 3, 4, 5, 6;𝑛 = 54;N=3, 𝛿 = 6, 𝛾 = 1 

  
  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.13 − Behaviour of the function 𝛽′(𝑥𝑁) depending on different values of 

dimensions of space N=4,6,8,10 respectively, 𝛼 = 1; 𝑛 = 54;𝛿 = 6, 𝛾 = 1 
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Figure 2.14 − Phase portrait depending on different values of dimensions of space 

N=4, 6, 8,10 respectively, 𝛼 = 1; 𝑛 = 54; 𝛿 = 6, 𝛾 = 1 

  
 
 
 
 
 
  
 
 
   
 
 
 
 
 
 
 

 
 

Figure 2.15 − Effective energy density 𝑇00 on different values of dimensions of 

space N =4, 6, 8, 10 respectively, 𝛼 = 1; 𝑛 = 54;  𝛿 = 6, 𝛾 = 1 
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In this part of the dissertation regular flat-symmetric solutions in multidimensional 𝑓(𝑅) = −𝛼𝑅𝑛  theory of gravity. From a physical point of view, these solutions  
present a model of our Universe as a Brane with codim=1. 

The properties of these branes depend on the following parameters: 𝛾 and 𝛿, 

describing the properties of the solution in the center of the brane, and parameters 𝛼 

and 𝑛 , describing a type of modified theory of gravity. To analyze the obtained 
solutions, phase portraits of the corresponding autonomous differential equations were 
constructed. The results show that brane solutions have AdS asymptotics. When 
increasing the parameters 𝛼, 𝑛 → ∞  solutions tend to a limit that is no longer 
dependent on the values of these parameters. It has been shown that the effective energy 

density 𝑇00  is negative and its dependence on the parameter values 𝛾, 𝛿, 𝛼, 𝑁  was 
investigated. The obtained results are published in the following works [107-110]. 
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3 MAGNETIC MONOPOLES 

  
3.1 History of magnetic monopoles 

This section is devoted to study the history of magnetic monopoles (ℳ𝑠). The 
magnetic monopoles has the unique distinction of being the first among hypotetical 
objects and constructions that despite their unsuccessful searches and experimental 
evidence, they have remained the focus of intensive attention of scientists. Theoretical 
physics has no analogy in the research history of existence of a magnetic monopole. In 
the process of studying their history, a strong connection with other current field 
researches in theoretical physics will be noticed: the problem of confinement in QCD, 
the problem of proton decay, evolution of the early Universe and many others. The 
main goal of this section is to show theoretical and experimental data of ℳ𝑠 and their 
role in our comprehension of theoretical physics, both historically and today. 
Magnetism has a very long journey and most of this time perceived as something 
mysterious. Even nowadays, we still don’t quite understand one basic property of 
magnets: Why it is not possible to get a magnet with two poles (North and South)?  

The first description of magnetism is related to Thales of Miletus, 
the Greek philosopher, who reported that the pieces of stone from Magnesia known as 
magnetic stone had weird properties. He also noticed that amber after being rubbed can 
attract feathers or hair and other light objects. Unlike amber, magnet do not need 
rubbing to obtain these properties, but when an iron needle was rubbed by a magnet, 
these properties were transferred to it. The magnet was also known in other countries, 
for example in China. While the Greeks thought the rocks were brought to the place of 
extraction, the noticed that a piece of magnet actually always pointed north or south. 
Chinese were first who guessed to use this effect of a magnet as a navigation instrument 
– a compass and after that in 1187 this invention came to Europe [111, 112]. 

Attempts to explain and understand these properties of magnets were based on 
purely philosophical speculation until 1269, when Petrus Peregrinus de Maricourt 
wrote a letter called Epistola de magnete, which describes the experiments that he 
conducted on magnets. He contributed to the discovery such properties of a magnet: a) 
a magnet has two opposite poles: north and south; b) introduced the term "pole" to 
describe them; c) when a magnet is cut into two halves, each half still has two opposite 
poles; d) two like poles repel each other.  

In 1600, William Gilbert, English physician, published a book called De Magnete, 

in which he tried to build the first consistent theory of magnetism based on careful and 
systematic experimentation [113]. In particular, he was the first who realized that the 
needle orientation of the compass has been due to magnetism of the Earth. This book 
is considered as the beginning of the scientific study of magnetism.  

It was widely believed that magnetism was caused by two oppositely charged 
magnetic fluids, which are composed of magnetic molecules or magnetic monopoles. 
This idea persisted until the 19-th century, until Andre-Marie Ampere, French 
physicist, showed that magnetic fields are created by electric currents and finally 
Michael Faraday, English scientist, demonstrated that magnetic fluids do not exist. 
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The first poles that you probably knew were geographic poles of the Earth. Next, 
were the magnetic poles. There is geological evidence that the Earth’s magnetic poles 
have been reversed in the past. For all magnetic poles such as for Earth, a compass and 
a magnet it holds that that they always come in pairs. These pairs are called magnetic 
dipoles. But our research is devoted to another special and mystical object: magnetic 
monopoles (ℳ𝑠). Let’s have a look at the main historical points in the study of ℳ𝑠 
using the following illustration: 

 
Figure 3.1 − Historical background of a magnetic monopole 

 
According to the above illustartion, a magnetic monopole is a hypothetical 

particle with a single magnetic charge, analogous to an electric charge. There is no way 
to get a separate south pole and a separate north pole-one get two half-size magnets, 
and each again has two poles (magnetic dipoles), oriented the same way as the original 
magnet. Magnetic fields (not only in permanent magnets, but, for example, in the Earth 



50 
 

and the Sun, in other planets and stars) are generated not by magnetic charges, but by 
electric currents. In other words, there are no known magnetic monopoles in nature. 

It is well-known that the Standard Model of elementary particles describes 61 
particles (the Higgs boson became the last one to be discovered). However, theorists 
have been actively working on various extensions of the Standard Model, usually 
leading to the prediction of new particles that experimenters are trying to discover. 
They try to find such exotic particles as supersymmetric particles, magnetic 
monopoles, tachyons, axions, WIMP particles, which have non-standard properties and 
have not yet been discovered, but are included in various theoretical models. 
Sometimes these searches last for decades, as has happened with the magnetic 
monopole [114-120]. 

There are strong theoretical arguments why magnetic monopoles should exist, but 
in spite of extensive searches they have never been found. This fact underlines the 
amazing asymmetry between magnetism and electricity. In some dictionaries, 
symmetry considered as the critical source for beauty judgment. One cannot deny that 
the more symmetric the theory, the more beautiful it looks. According to the Biot-
Savart law, magnetic fields are excited when electric charges move, and the first 
Faraday’s law of electromagnetic induction shows that the motion of magnets excites 
electric currents. However, carriers of electric charges can be separated - for example, 
electrons carry a negative charge and protons positive. With magnets, apparently, the 
situation is different. 

Based on Faraday’s discoveries, James Clerk Maxwell developed his theory of 
electrodynamics, which have been published in 1864 [121]. This theory was a huge 
breakthrough in physics, because it not just combined magnetism and electricity in one 
theory, but also explained the properties of light as an electromagnetic wave traveling 
through space. In addition, the theory showed that the speed of light had to be constant, 
and therefore he also paved the way for the development of the theory of relativity. 

Nothing in classical electrodynamics prohibits magnetic monopoles; in fact, they 

would make the theory more symmetric. The asymmetry of Maxwell’s equations with 
respect to magnetic and electrical phenomena is quite obvious, and the symmetry can 
be easily restored by introducing in addition to the observed electric charges and 
currents, hypothetical magnetic charges and magnetic currents. For the first time, Pierre 
Curie mentioned such a possibility in one of his notes in 1894 see Figure 3.1[122], but 
since no one had ever observed such charges and currents, then this suggestion was 
forgotten. 

For reaching a new level in investigation of ℳ𝑠 , the creation of quantum 
mechanics helped. In 1931, Paul Dirac found a method of explaining one of the greatest 
mysteries of physics which relies on the fact of the existence of at least one magnetic 
monopole in the Universe. He was interested in the symmetry between electricity and 
magnetism and showed that the introduction of magnetic charges can elegantly solve 
the long-standing mystery of nature - the quantization of electric charge [123]. 

Dirac noticed that if there is only one magnetic monopole, it defines the smallest 
possible value for an electric charge. All observed charges must be integer multiples 
of this minimum value; in other words, charge must be quantized. The existence of a 
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monopole would therefore explain the experimental observation that electric charge is 
quantized. So that, it would be necessary to modify the formulations of some theorems 
and equations describing the phenomena of magnetism, in particular Gauss’ theorem 
for the magnetic field. 

Gauss’ law for magnetism in the differential form can be written as [114, p. 2]: 
 
 ∇ ⋅ 𝑩 = 0, (3.1) 

 
where ∇ denotes the divergence, and B is the magnetic field. 

According to Gauss’ law- one of the four Maxwell’s equations, the magnetic field 
B has a divergence equal to zero. In other words, that it is a solenoidal vector field. It 
is equivalent to the statement that magnetic monopoles do not exist. Let’s imagine a 
magnetic monopole isolated in space, surrounded by a closed surface of arbitrary 
configuration. At every point on the surface, there will be a magnetic field produced 
by a monopole. According to Gauss’s law, the total magnetic flux passing through such 
a closed surface should be zero, but if there is a magnetic monopole inside it, it will 
obviously be nonzero. That is, Gauss’ law does not allow the existence of ℳ𝑠. 

Let us suppose that ℳ𝑠 will be discovered so that Gauss’ law for magnetism has 
to be rewritten. In the other words, this law would be proportional to the magnetic 
charge density 𝜌𝑚 , analogous to Gauss’ law for electric field. This suggestion was 
proposed by Dirac and these particles are called Dirac monopoles [123]. 
The modification of Gauss’ theorem under the assumption that magnetic monopoles 
exist:  

 
 ∇ ⋅ 𝑩 = 4𝜋𝜌𝑚, (3.2) 

 
where ∇ denotes the divergence, and B is the magnetic field, see Figure 3.2. 

In 1974, independently Gerard ’t Hooft and Alexander Polyakov showed that 
magnetic monopoles are predicted by many particle physics models, especially by 
GUTs, which aim to describe electromagnetic, weak and strong interactions by a single 
unified theory [124, 125]. Additionally, in the following article [126] monopole 
solutions in non-Abelian  Proca-Dirac-Higgs theory were studied. They have 
investigated a system consisting of a non-Abelian SU(2) Proca field interacting with 
nonlinear scalar (Higgs) and spinor fields. The first use of a Proca field was by Yukawa 
to describe pions. Proca theories are gauge theories-Abelian and non-Abelian ones, 
where the gauge invariance is broken by introducing a mass term. Proca theory has 
found applications in various fields of modern theoretical physics. 

The use of a Proca field results in the following consequences: a photon may 
acquire a rest mass, Einstein-Proca gravity involves a graviton of nonzero rest mass. 
The scalar field is described by the Klein-Gordon equation spinor field is described by 
the Dirac equation. 
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Figure 3.2− Magnetic fields of a monopole 
 

The results obtained in the article [126] describe a Proca monopole. For such a 
system, it has been shown that particlelike spherically symmetric solutions with finite 
energy do exist. The main reason why such solutions can exist is the presence of the 
mass of the non-Abelian Proca field, and also because of the structure of the Dirac 
equation leading to the existence of regular solutions of this equation. Additionally, 
energy spectra of a Proca monopole were studied. It has been shown that the energy 
spectrum has a minimum, one can say that there is a mass gap in non-Abelian Proca-
Dirac-Higgs theory. If such a mass gap does exist, this would be of great significance. 
The reason is that in quantum field theory there is a problem to prove the existence of 
a mass gap in QCD.  

Another interesting research presented in the article [127], where a gravitating 
Proca monopole in Einstein-non-Abelian-Proca theory has been studied.  

In our research we show that not only in non-Abelian Proca theory, but also in  
Yang-Mills theory, there are monopole-like solutions and for obtaining them no need 
to introduced a Higgs field. It would be of special interest if we can prove that the 
energy spectrum of such monopole-like objects has a minimum.  

The presence of a mass gap in particlelike solutions was firstly demonstrated in 
[128] within nonlinear Dirac theory. The corresponding mass gap was called «the 
lightest stable particles», because the term «mass gap» at that time was not yet known. 

In the Figure 3.1 some important searches for ℳ𝑠 can be traced. These searches 
for magnetic monopoles were conducted in 2 directions: in the first way scientists try 
to detect preexisting magnetic monopoles and in the second way they try to create and 
find new candidates for magnetic monopoles. 

One of the important searches is the creation of a "virtual" analogue of the 
monopole generated by a Bose-Einstein condensate, which is a liquid of many atoms 
of rubidium, which behaves like one giant atom at ultralow temperatures and some 
other conditions. The scientists noticed that a Bose-Einstein condensate behaves 
unusually in the presence of an external magnetic field. They predicted that inside the 
condensate there is a so-called "Dirac string" - a hypothetical one-dimensional object, 
at the ends of which there must be monopoles. Physicists took advantage of this 
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property of the Bose-Einstein condensate and tried to find "virtual" monopoles in it to 
study their properties . 

Next, in the Figure 3.1 one can see that there were performed a huge number of 
experiments like the MoEDAL experiment which look for monopoles and other exotic 
objects at CERN’s Large Hadron Collider . They are absolutely stable, so they would 
not decay to other particles, unlike most other particles that physicists are hoping to 
find. ℳ𝑠 interact relatively strongly through the electromagnetic field, which means 
that they would be easy to study experimentally. It is supposed that the energy (mass) 
even one magnetic monopole is so large, so that magnetic monopoles are probably will 
not occur in accelerators. 

If scientists manage to find them in nature or create them in the laboratory, then 
this discovery will confirm the assumption that the electric charges of all particles 
assume discrete values on which almost all modern physical theories are based. 
Therefore, it would be natural to assume that searches for magnetic monopoles (ℳ𝑠) 
is a fascinating journey and finding them would be an incredible breakthrough for all 
modern physical theories. 

Still we do not exactly know any theoretical reason why such hiding particles 
could not exist. Are we still missing an important piece of the puzzle of the theory? Or 
do magnetic monopoles exist and we just have not managed to discover them? In the 
next sections we will investigate all these fundamental aspects at a deeper level.  

 
3.2 Monopoles in classical electrodynamics 

It is well known that classical electromagnetism is perfectly described by 
Maxwell’s equations. If there are no any electric and magnetic charges they have 
following form [114, p.3]: 

 
 ∇ ⋅ 𝑬 = 0, (3.3) 

 
 ∇ ⋅ 𝑩 = 0, (3.4) 

 
 ∇ × 𝑩 − ∂0𝑬 = 0, (3.5) 

 
 ∇ × 𝑬 + ∂0𝑩 = 0, (3.6) 
 

where 𝑬  and 𝑩  represent the electric and magnetic fields, respectively. In the 

equations (3.3)-(3.6) the symbol ∇ ⋅ is the divergence of the vector field, and ∇ × is 
the curl. A non-zero divergence would indicate that field lines are ending, whereas the 
curl characterize their curvature. Therefore, equations (3.3) and (3.4) show that neither 
electric nor magnetic field lines have initial or final points, in other words, they are 
closed. Equations (3.5) and (3.6) show that time-dependent magnetic fields generate 
electric fields, and conversely. 
In the presence of any electric charges Maxwell’s equations take the form:  
 

 ∇ ⋅ 𝑬 = 𝜌, (3.7) 
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 ∇ ⋅ 𝑩 = 0, (3.8) 

  
 ∇ × 𝑩 − ∂0𝑬 = 𝒋, (3.9) 

  
 ∇ × 𝑬 + ∂0𝑩 = 0, (3.10) 
 

where 𝜌 and 𝒋 stand for electric charge and current densities. 
Let us consider duality transformations which is a useful method for a transition 

from standard classical electromagnetism to the theory where magnetic charges 
(magnetic monopoles) exist. 

These equations can be written in the covariant form with the help of the tensor 
of the electromagnetic field ℱ𝜇𝜈 [129]: 

 
 ∂𝜈ℱ𝜇𝜈 = −𝑗𝜇 , (3.11) 
 

 ∂𝜈ℱ̃𝜇𝜈 = 0, (3.12) 
where  

 𝑗𝜇 = (𝜌, 𝑗), (3.13) 
  

 ℱ0𝑖 = −𝐸𝑖 , (3.14) 
  

 ℱ𝑖𝑗 = −𝜀𝑖𝑗𝑘𝐵𝑘 . (3.15) 
 
The dual tensor is identified as: 

 

 ℱ̃𝜇𝜈 = 12 𝜀𝜇𝜈𝜌𝜎ℱ𝜌𝜎 . (3.16) 

 
In vacuum, where 𝑗𝜇 = 0 , Maxwell equations (3.11) and (3.12) are symmetrical 

according to duality transformations: 
 

 ℱ𝜇𝜈 → ℱ̃𝜇𝜈 , ℱ̃𝜇𝜈 → −ℱ𝜇𝜈, (3.17) 
 
which corresponds to the permutation of electricity and magnetism : 𝑬 → 𝑩, 𝑩 → −𝑬. 
It means, if we replace the electric and magnetic fields the equations remain 
unchanged. This means that the electric and magnetic fields themselves behave exactly 
in the same way. The term 𝑗𝜇 in (3.11) breaks this symmetry. So, let us introduce a 

magnetic current 𝑘𝜇 = (𝜎, 𝜿) on the right hand side of the equation (3.12), so that we 
obtain modified Maxwell equations:  
 

 ∂𝜈ℱ𝜇𝜈 = −𝑗𝜇 , (3.18) 

  

 ∂𝜈ℱ̃𝜇𝜈 = −𝑘𝜇 , (3.19) 
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where (𝑭, 𝑭̃), (𝑬, 𝑩), (𝒋, 𝒌) are «dual vectors». The introduction of 𝑘𝜇  leads to the 
existence of magnetic monopoles. Let’s consider Maxwell’s equations with the 
presence of magnetic monopoles see Figure 3.3 [130]. 
 

 
   
 
 
 

 
 

 
Figure 3.3 − Maxwell’s equations with the presence of magnetic monopoles 

 
On the right hand side of Figure 3.3, terms on the right-hand sides of the equations 
arise due to magnetic monopoles. The arrows illustrate transformations that obey 
duality symmetry. There E and B are the electric and magnetic fields, respectively; 𝜀0 

and 𝜇0 are the permittivity and permeability of vacuum; c is the speed of light; 𝜌 and 𝑱 are the electric charge and current densities; 𝜌𝑀 and 𝑱𝑴 are the magnetic charge 
and current densities. 

It is well-known that electric charges exist, and lines of electric fields start and 
end at electric charges. More precisely, the electric field strength around the electric 
charge 𝑞 is [114, p.3]:  

 

 𝐸⃗⃗(𝑟) = 𝑞4𝜋𝑟3 𝑟. (3.20) 

 
Lorentz force acting on the elecrtic charge moving in an electromagnetic field with 
velocity 𝜐⃗ has the form: 
 

 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝜐⃗ × 𝐵⃗⃗). (3.21) 

 
If magnetic charges exist, then according to the duality, the magnetic field around a 
magnetic charge 𝑔 would be similar to the equation (3.20):  
 

 𝐵⃗⃗(𝑟) = 𝑔4𝜋𝑟3 𝑟, (3.22) 

 
Lorentz force acting on the magnetic charge 𝑔:  
 

 𝐹⃗ = 𝑔(𝐵⃗⃗ + 𝜐⃗ × 𝐸⃗⃗). (3.23) 

 
However no magnetic charges have been found so the duality symmetry looks broken. 
This means that, in fact, the essential difference between electricity and magnetism is 
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that electric charges exist but magnetic charges do not. This creates the question why 
nature has such kind of asymmetry?  From a classical electrodynamics point of view, 
this theory is perfectly compatible with the notion of magnetic monopoles because their 
existence would make the theory more symmetric. 

 
3.3 Dirac monopole 

In the previous section it was mentioned that after developing quantum 
mechanics, quantization of electric charge was explained, which was like a mystery. In 
1931 Paul Dirac showed that especially the existence of ℳ𝑠 would shed light on this 
problem [119, 123]. 

He established that on the quantum level the existence of ℳ𝑠  leads to the 
following condition [123, p.2]:  

 

 𝑞𝑔 = 𝑛ℏ𝑐2 → 𝑔 = 𝑛𝑔𝐷 = 𝑛 ℏ𝑐2𝑞~𝑛 ⋅ 1372 𝑞, (3.24) 

 

where q and 𝑔 represents electric and magnetic charge; n is an integer; 𝑔𝐷 = ℏ𝑐2𝑞 is the 

unit Dirac charge. This is recognizable Dirac’s condition of quantization - which means 
that if monopoles exist there is quantization of electric charge. To be precise, possible 
values of the electric charge of any particle takes only integer multiples values of the 
elementary charge. Indeed, it is well-known that all particles have charges with integer 
multiples of the electric charge of the electron. The exceptions are quarks (have 
fractional charges) which not obey the quantization condition. So, the above 
quantization condition of the electric charge can be considered as evidence for the 
existence of ℳ𝑠. 

The quantization condition can be proven in the next way. We will consider the 
case when particles do not carry both charges, so it carries either electric or magnetic 
charges. Values of electric and magnetic charges can be expressed by 𝑞𝑖  and 𝑔𝑖 , 
respectively. Dirac’s quantization condition considering the above assumption has the 
following form [129, p.2]:  
 

 
𝑞𝑖𝑔𝑖4𝜋 = 12𝑛𝑖𝑗 , (3.25) 

 
where 𝑛𝑖𝑗  is an integer number. So, assume that there is an elementary electrical 

charge 𝑞0 and an elementary magnetic charge 𝑔0:  
 

 𝑞𝑖 = 𝑛𝑖𝑞0, (3.26) 
  

 𝑔𝑖 = 𝑛′𝑖𝑔0, (3.27) 
  

 
𝑞0𝑔04𝜋 = 12𝑛0, (3.28) 

 
where 𝑛𝑖 , 𝑛′𝑖 , 𝑛0  are integers. From the last equation one can see the interaction 
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between two ℳ𝑠:  
 

 𝑔02~𝑞02 𝑛024 (4𝜋𝑞02)2~(𝑛02𝛼)2 𝑞02, (3.29) 

 
which is stronger than the interaction between electrically charged particles in 𝛼−2~104  times. In detail, the value of the coupling constant of electrical charges 𝑞024𝜋~𝛼~ 1137 makes the interaction between ℳ𝑠 quite strong, which means that the 

creation of a pair of ℳ𝑠 is much more complicated than of a pair of electrical charges. 
 

3.4 Dirac’s string 

By considering the motion of a particle in a given electromagnetic field it is 
possible to derive the Dirac’s quantization condition. General quantization of the 
electromagnetic field in the absence of ℳ𝑠, the electromagnetic field strength 𝐹𝜇𝜈 is 

expressed through the 4-vector potential 𝐴𝜇 = (𝜑, 𝐴):  

 

 𝐹𝜇𝜈 = ∂𝜇𝐴𝜈 − ∂𝜈𝐴𝜇 , (3.30) 

 or  
 

 𝐸⃗⃗ = − ∂𝐴⃗∂𝑡 − ∇⃗⃗⃗𝜑, (3.31) 

  

 𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴, (3.32) 
 

and condition 𝜕𝜇𝐹̃𝜇𝜈 = 0  automatically satisfied. The Schrödinger equation 

describing the motion of a particle in the electromagnetic field takes the form:  
 

 [ 12𝑚 (𝑝⃗ − 𝑒𝐴)2 + 𝑒𝜑]𝜓 = 𝑖 ∂𝜓∂𝑡 . (3.33) 

 
This equation is invariant under gauge transformations:  
 

 𝐴(𝑥) → 𝐴(𝑥) + 1𝑒 ∇𝛼(𝑥), (3.34) 

  

 𝜓(𝑥) → 𝑒𝑖𝛼(𝑥)𝜓(𝑥),  (3.35) 
 

where 𝛼(𝑥) is an arbitrary function. However, if ℳ𝑠 exists, then the vector potential 
can’t exist in any space-time point. For solving this problem Dirac introduced the 
concept of a string. Let’s consider the magnetic field strength of a monopole, which 
has a form:  
 

 𝐵 = 𝑔4𝜋𝑟2 𝑟̂. (3.36) 
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For any closed surface enclosing the origin, one has:  
 

 𝑔 = ∮𝑠 |𝐵⃗⃗𝑑𝑆|. (3.37) 

 
Let’s consider the field created by an infinitely long and thin solenoid located along 
the negative axis 𝑧 whose positive pole (having a magnetic charge) is at the origin. 
The magnetic field strength has the form:  
 

 𝐵⃗⃗𝑠𝑜𝑙 = 𝑔4𝜋𝑟2 𝑟⃗̂ + 𝑔𝜃(−𝑧)𝛿(𝑥)𝛿(𝑦)𝑧⃗̂, (3.38) 

  

where 𝑧⃗̂ is the unit vector along the 𝑧 axis. This value differs from the field strength 

of the magnetic monopole 𝐵 = 𝑔4𝜋𝑟2 𝑟̂  by the second term in (3.38) - a singular 

magnetic flux along the solenoid. Since the magnetic field strength given in (3.38) is 

not created by any sources (∇⃗⃗⃗ ⋅ 𝐵⃗⃗𝑠𝑜𝑙 = 0), one can take:  
 

 𝐵⃗⃗𝑠𝑜𝑙 = ∇⃗⃗⃗ × 𝐴. (3.39) 
 

Then from the (3.36), (3.38), (3.39) expressions one can show that the magnetic field 
strength of a monopole is:  
 

 𝐵⃗⃗ = 𝑔24𝜋𝑟2 𝑟⃗̂ = ∇⃗⃗⃗ × 𝐴 − 𝑔𝜃(−𝑧)𝛿(𝑥)𝛿(𝑦)𝑧⃗̂, (3.40) 

 
which is illustrated in the Figure 3.4. The line along which the solenoid is located is 
called Dirac’s string.  

  
Figure 3.4 − Dirac’s string 

 
The 4- vector potential 𝐴𝜇 created by solenoid is:  

 

 𝐴 = 𝑔4𝜋𝑟 (1−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 ) 𝜙⃗⃗̂. (3.41) 
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In fact, in quantum theory the problem of the existence of ℳ𝑠 is much more complex 
than in others, but still interesting. This is due to the fact that in quantum mechanics, 

electromagnetic forces are described by scalar and vector potentials 𝜑 and 𝐴, instead 

of electric and magnetic strength fields 𝐸⃗⃗ and 𝐵⃗⃗: 
 

 𝐸⃗⃗ = − ∂𝐴⃗∂𝑡 − ∇⃗⃗⃗𝜑, (3.42) 

  

 𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴. (3.43) 
  
In this representation scalar and vector potentials do not satisfy to the duality symmetry 

between 𝐸⃗⃗ and 𝐵⃗⃗. In fact, there are an infinite number of potentials that can create the 

same electric and magnetic fields, so that they remain unchanged by changing 𝜑 and 𝐴 by:  

 𝜑 → 𝜑 − ∂𝜆∂𝑡 , 𝐴 → 𝐴 + ∇⃗⃗⃗𝜆, (3.44) 

 
where 𝜆 is any function. This equation is known as a gauge transformation. Physical 
quantities will not change under gauge transformations, so that such a kind of theory is 
a gauge symmetry theory. Maxwell equations have gauge symmetry which is 
mathematically denoted as U(1).  

However, these potentials arise to forbid magnetic charges. This fact is taken from 
the vector analysis that the divergence of the curl of a vector field always vanishes: 

  

 ∇⃗⃗⃗ ⋅ 𝐵⃗⃗ = ∇⃗⃗⃗ ⋅ (∇⃗⃗⃗ × 𝐴) = 0. (3.45) 

 
Therefore, if the magnetic field is described by (3.43), then its magnetic field lines 

could never have end points. This leads to the conclusion that a vector potential cannot 
describe ℳ𝑠. So, because the vector potential cannot describe ℳ𝑠, does this mean 
that quantum mechanics prohibits the existence of magnetic charges? Paul Dirac 
showed that it does not. He was able to search for a vector potential that will describe ℳ𝑠 . He made it with the same method like Faraday had constructed magnetic 
monopole 110 years earlier in his experiments. 

Let us consider a long and thin solenoid, see Figure 3.5. When an electric current 
moves through this solenoid, it creates a magnetic field inside it. Because the field lines 
cannot end, this field spreads out in all directions from the end of the solenoid. This 
phenomena can be described in terms of the magnetic flux Φ , which is the magnetic 
field integrated over a cross-sectional surface, 

 

 Φ = ∫ 𝑑𝑆 ⋅ 𝐵⃗⃗. (3.46) 

 
If one takes the condition that the length of the solenoid is much greater than its 

width, the shape of the magnetic field around the end of the solenoid looks precisely 
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like in a magnetic monopole with magnetic charge 𝑔, so 𝑔 = Φ . 
 

 
 

    
 
 
 
 
 
 
 
 

 
 
 

 
Figure 3.5 − Magnetic field created by a solenoid  

  
Mathematically, one can imagine it by making the solenoid infinitesimally thin 

and long, so that the other endpoint is infinitely far away, then forget about the solenoid 
itself and only keep the vector potential, which can be written as:  

 

 𝐴(𝑟) = 𝑔(𝑟×𝑘̂)4𝜋|𝑟|(|𝑟|−𝑟⋅𝑘̂), (3.47) 

  

where 𝑘̂  is a unit vector pointing in the direction of the solenoid. This equation 

describes a magnetic monopole connected to an infinitesimally thin line carrying Φ to 
it. Such a system is called a Dirac string. 

If we consider a Dirac string placed between two slits, the complex phase 
difference between the two slits 𝛥𝜃 is: 

 

 𝛥𝜃 = 𝑞 ∮𝑐 𝑟 ⋅ 𝐴 = 𝑞 ∫ 𝑑𝑆 ⋅ 𝐵⃗⃗ = 𝑞 ⋅ Φ = 𝑞 ⋅ 𝑔. (3.48) 

 
It is important to realise that the complex phase is only defined modulo 2𝜋. Two 

complex numbers whose phases differ by an integer multiple of 2𝜋  are equal. 

Therefore, the Dirac string is only observable if the phase difference 𝛥𝜃 is not an 
integer multiple of 2𝜋. 

To conclude, according to Dirac’s monopole which is illustrated in Figure 3.6, 
any magnetic north pole is attached to a magnetic south pole by using a concept of a 
Dirac’s string-a line of singularity, a string, which carries magnetic flux and preserves 
the continuity of the magnetic field lines. If the magnetic charge of the monopoles 
satisfies the Dirac’s quantization condition, the Dirac string is unobservable and does 
not affect the motion or behavior of the monopoles which it connects. 
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Figure 3.6 − Dirac’s monopole 
  

3.5 Solitons in field theory 

In order to discuss a monopole in non-Abelian gauge theory in Section 4, let us 
first consider the classical field theory with finite-energy solutions, which are called 

solitons. As an example, consider the theory 𝜆𝜙4  in one spatial and one time 
dimensions. The Lagrangian of this theory has the form [129]:  

 

 ℒ = ∫ [12 (∂0𝜙)2 − 12 (∂𝑥𝜙)2 − 𝑉(𝜙)] 𝑑𝑥, (3.49) 

 
where  
 

 𝑉(𝜙) = 𝜆2 (𝜙2 − 𝑎2)2, 𝑎2 = 𝜇2𝜆 . (3.50) 

 
 The corresponding Hamiltonian is given by the formula:  
 

 ℋ = ∫ [12 (∂0𝜙)2 + 12 (∂𝑥𝜙)2 + 𝑉(𝜙)] 𝑑𝑥, (3.51) 

 

when 𝜇2 > 0, the classical configuration corresponding to the ground state has the 
form:  
 

 𝜙 = ±𝑎 = ±√𝜇2𝜆 , (3.52) 

 
and the energy of the ground state 𝐸 = 0. An interesting feature of this model is that 
it contains static (time-independent) solutions of the equations of motion with finite 
energy (solitons). Time-independent solutions of the equations of motion can be 
obtained from the Lagrangian ℒ using the variational principle:  
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 −𝛿ℒ = 𝛿 ∫ 𝑑𝑥 [12 (∂𝑥𝜙)2 − 𝑉(𝜙)] = 0. (3.53) 

 
From a mathematical point of view, such a problem is equivalent to the problem of the 
motion of a particle of unit mass in the potential field 𝑉(𝑥); the equation of motion in 
this case is derived from the relation:  
 

 −𝛿 ∫ 𝑑𝑡ℒ′ = 𝛿 ∫ 𝑑𝑥 [12 (𝑑𝑥𝑑𝑡)2 − 𝑉(𝑥)] = 0. (3.54) 

 
Any motion of a particle in the field of the potential −𝑉(𝑥) corresponds to a time-
independent solution of the field equation. Nevertheless, not all of these solution of the 
field equation with finite energy . The condition in order to obtain a solution with finite 
energy is that the field 𝜙 tends to a zero of the function 𝑉(𝜙) as 𝑥 → ±∞ so the 
energy integral (3.51) is finite.  

It follows from the condition that the energy is finite when the solution at 𝑡 →±∞  takes vacuum values (±𝑎) ; but since we have a system with a degenerate 
vacuum, the solution can take on values equal to different minima (+ a or - a) at 
different infinitely distant points (+∞ or−∞). For example, there are motions where 
a particle starts from the top of one hump and moves to the top of another, having zero 
energy, see Figure 3.7 [129].  

 
 
 
 
 
 

 
 
 

 
 
 

 
Figure 3.7 − Motion of a particle in the field of the potential −𝑉(𝑥) [129, p. 3] 

 
The law of energy conservation for the particle motion with zero energy, one has:  
 

 
12 (𝑑𝑥𝑑𝑡2 + [−𝑉(𝑥)]) = 0, (3.55) 

 
this related to the equation: 
  

 
12 (𝑑𝜙𝑑𝑥2) = 𝑉(𝜙), (3.56) 
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in the case of field theory. One can solve Equation (3.62) by integrating, and the result 
has the form:  

 𝑥 = ±∫𝜙𝜙0 𝑑𝜙′[2𝑉(𝜙′)]−1/2, (3.57) 

 
where 𝜙0 is the value of 𝜙 at the point 𝑥 = 0; it can be any number in the range of 𝑎 and −𝑎. The potential which is given by formula (3.56), in the case of the 𝜆𝜙4 
theory and the solutions with finite energy following from (3.57) can be expressed in 
the form:  
 

 𝜙+(𝑥) = 𝑎𝑡ℎ(𝜇𝑥), (3.58) 
  

 𝜙−(𝑥) = −𝑎𝑡ℎ(𝜇𝑥). (3.59) 
 

The solution 𝜙+ is usually called a kink, and 𝜙− is called an antikink. The energy of 
a kink (antikink) can be calculated from Equations (3.58)-(3.59) and equals to:  
 

 𝐸 = 4 𝜇33𝜆 (3.60) 

 
and really is finite. It is clear that as 𝑥 → ±∞ the solution 𝜙+ (or 𝜙− ) approaches a 

zero of the function 𝑉(𝜙) , i.e.  
 

 𝜙+(𝑥) → ±𝑎, 𝑥 → ±∞. (3.61) 
 

This behaviour is shown in Figure 3.8. It can be shown that the solutions are stable 
with respect to small perturbations, although they do not correspond to the absolute 
minimum of the potential energy 𝑉(𝜙) (i.e.𝜙+(𝑥) ≠ ±𝑎 for all variables x and t ).  

 

   
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.8 − The solution 𝜙+ (or 𝜙−) [129, p. 4] 

 

Solutions with finite energy in the theory 𝜆𝜙4 in space-time dimensions 1 + 1 
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have a rather interesting topological property due to which these solutions turn out to 
be stable. This topological property can be easily generalized to the case of a more 
complex theory in a space of higher dimensions and turns out to be very useful for 
finding stable finite-energy solutions. The topological properties of a kink (antikink) 

in the theory 𝜆𝜙4 in two-dimensional space-time can be studied by proceeding as 
follows. From the requirement that the energy be finite, we have at spatial infinities:  

 
 𝜙(∞) − 𝜙(−∞) = 𝑛(2𝑎), (3.62) 

 
where n=0 corresponds to the ground state, n = 1 is a kink, and n = -1 - antikink. The 
ratio (3.62) can be written as:  
 

 ∫∞−∞ (∂𝑥𝜙)𝑑𝑥 = 𝑛(2𝑎). (3.63) 

 
Thus, if we define the current as: 
  

 𝒥𝜇(𝑥) = 𝜀𝜇𝜈 ∂𝜈𝜙(𝑥), (3.64) 

 
then it will be automatically conserved, since 𝜀𝜇𝜈  is the antisymmetric tensor. The 

corresponding conserved charge exactly coincides with the expression:  
 

 𝒬 = ∫∞−∞𝒥0(𝑥)𝑑𝑥 = ∫∞−∞ ∂𝑥𝜙𝑑𝑥 = 𝑛(2𝑎). (3.65) 

 
It follows that the kink number n in (3.62) is a conserved quantum number. Thus, the 
transitions between kinks (antikinks) and ground states are impossible, i.e., kinks 
(antikinks) are stable. This conservation law, usually called the topological 
conservation law.  

Thus, the topological conservation law (3.65) splits the entire set of solutions with 
finite energy into separate sectors: n = 0 (vacuum), n = 1 (kink), n = -1 (antikink), etc. 

In the theory 𝜆𝜙4, the set of minima of the potential, given by formula (3.52), also 

consists of two discrete points ±𝑎 ; we’ll call it 𝑀0:  
 
 𝑀0 = 𝜙:𝑉(𝜙) = 0. (3.66) 
 

The condition for the finiteness of the energy of the solution to the equation of motion 
leads to the fact that the asymptotic values of 𝜙(𝑥) must coincide with a zero of the 

function 𝑉(𝜙):  
 

 𝑙𝑖𝑚𝑥→±∞𝜙(𝑥) = 𝜙 ∈ 𝑀0. (3.67) 

 
This condition can be viewed as a mapping from the set S to the set 𝑀0. For example, 

in the case of a ground state configuration, both points ±∞ are mapped to the point 𝑎 

(or -𝑎), and in the case of a kink configuration 𝜙+, the mapping +∞ to 𝑎 and −∞ 
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to −𝑎  occurs. These mappings are topologically different in the sense that no 
continuous deformations can produce the other from one of them. This is the essence 
of topological conservation laws. These topological properties turn out to be very 
useful in more complex theories with higher dimensions, where it is difficult to obtain 

explicit solutions to the equations. Summing up, we note that in the 𝜆𝜙4 theory in two 
dimensions there exist solutions of equations of motion with finite energy and 
nontrivial topological properties, and these solutions are stable with respect to the 
transition to the vacuum. It is clear that the existence of topologically stable solutions 
of this type with finite energy requires the presence of a degenerate vacuum 
(spontaneous symmetry breaking) and nontrivial topological properties in the theory. 

 
3.6 ’t Hooft-Polyakov monopoles 

In the previous section ℳ𝑠 in classical electromagnetism were discussed. There 

is also was shown that the existence of ℳ𝑠 can explain the quantization of electric 
charge - Dirac’s quantization condition. This section is devoted to more the 
complicated theory of SU(3) Yang Mills theory coupled to a Higgs field, which is 
referred to as ’t Hooft-Polyakov monopole [124, 125]. 

 
3.6.1 Soliton solutions in SO(3)-model 

In the gauge theory with scalar fields one can find topologically non-trivial 
solutions with finite energy. So, in this section we study ’t Hooft-Polyakov monopole. 
In 1974 Gerard ’t Hooft and Alexander Polyakov found so called "hedgehog" solutions 
for quantum field theories. According to them, these solutions describe "lumps" of 
fields with finite, nonzero size, which acquire a magnetic charge. If the lumps are small 
they can be considered as point-like ℳ𝑠, see Figure 3.9. 

 
   
 
 

 
 
 

 
 
 
 
 
 
 

Figure 3.9 – ’t Hooft-Polyakov monopole surrounded by a quantum field cloud, 
simulated using lattice field theory 

 
In this theory a monopole arises as a topologically non-trivial solution with finite 
energy. A good example of a non-abelian theory with ℳ𝑠  is the SO(3) Georgi-
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Glashow model, which can be considered as a simplified version of the Weinberg-
Salam electroweak theory with spontaneous symmetry breaking due to the Higgs 
mechanism. This model is based on the gauge group SO(2) with a triplet of Higgs fields 𝜙 . This theory is described by the following Higgs-Yang-Mills Lagrangian:  

 

 ℒ = − 14𝐹𝑎𝜇𝜈𝐹𝑎𝜇𝜈 + 12 (𝐷𝜇𝜙)(𝐷𝜇𝜙) − 𝑉(𝜙), (3.68) 

 
 

 𝐹𝜇𝜈𝑎 = ∂𝜇𝐴𝜈𝑎 − ∂𝜈𝐴𝜇𝑎 − 𝑒𝜀𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐 , (3.69) 

 
 

 (𝐷𝜇𝜙)𝑎 = ∂𝜇𝜙𝑎 − 𝑒𝜀𝑎𝑏𝑐𝐴𝜇𝑏𝜙𝑐 , (3.70) 

 
 

 𝑉(𝜙) = 𝜆4 (𝜙 ∙ 𝜙 − 𝑎2)2.       (3.71) 

 
Equations of motion take the following forms:  

 
 (𝐷𝜈𝐹𝜇𝜈)𝑎 = −𝑒𝜀𝑎𝑏𝑐𝜙𝑏(𝐷𝜇𝜙)𝑐 , (3.72) 

  

 (𝐷𝜇𝐷𝜇𝜙)𝑎 = −𝜆𝜙𝑎(𝜙 ∙ 𝜙 − 𝑎2), (3.73) 

 
In this model the set of values 𝜙, which is minimizing the potential energy 𝑉(𝜙) is 
defined as:  
 

 𝑀0 = {𝜙 = 𝜂; 𝜂2 = 𝑎2}. (3.74) 
 

Lets take the vector 𝜙 as:  
 

 𝜙 = (0,0, 𝑎). (3.75) 
 

Electrical and magnetic fields are defined as:  
 

 𝐹3𝑜𝑖 = 𝐸𝑖 , 𝐹3𝑖𝑗 = 𝜀𝑖𝑗𝑘𝐵𝑘. (3.76) 

 
For obtaining solutions with finite energy let’s require that for 𝑟 → ∞,𝜙(𝑟) tends the 

the some value from 𝑀0. By mapping each point 𝑆2 into the corresponding point of 

2-sphere 𝑆2 from 𝑀0, configurations with non-trivial topology will be obtained:  
 

 𝜙𝑖∞ = 𝜂𝑖 = 𝑎𝑟̂𝑖 . (3.77) 
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Figure 3.10 − 𝜙 field configuration for a monopole 

 
By considering this configuration the Ans𝑎̈tz will be chosen in the form of: 

 

 𝜙𝑏 = 𝑟𝑏𝑒𝑟2𝐻(𝑎𝑒𝑟), (3.78) 

 
 

 𝐴𝑏𝑖 = −𝜀𝑏𝑖𝑗 𝑟𝑗𝑒𝑟2 [1 − 𝐾(𝑎𝑒𝑟)], (3.79) 

 

 𝐴𝑏0 = 0, (3.80) 

 
where H and K are dimensionless functions, which have to be obtained from the  
equation of motion. According to the Ans𝑎̈tz the energy of the system has the following 
form: 

 

 𝐸 = 4𝜋𝑎𝑒 ∫∞0 𝑑𝜉𝜉2 [𝜉2(𝑑𝐾𝑑𝜉)2 + 12 (𝜉 𝑑𝐻𝑑𝜉 − 𝐻)2 + 12 (𝐾2 − 1)2 +𝐾2𝐻2 + 𝜆4𝑒2 (𝐻2 − 𝜉2)2], (3.81) 

 
where 𝜉 = 𝑎𝑒𝑟. The condition of stationarity of the energy E under variation fields for  
H and K the equations: 

 

 𝜉2 𝑑2𝐾𝑑𝜉2 = 𝐾𝐻2 + 𝐾(𝐾2 − 1), (3.82) 

 

 𝜉2 𝑑2𝐻𝑑𝜉2 = 2𝐾2𝐻 + 𝜆𝑒2𝐻(𝐻2 − 𝜉2). (3.83) 

 
These equations of motion for H and K can also be obtained by substituting Ans𝑎̈tz 
(3.78)-(3.80) into the equations of motion (3.72)-(3.73). From the asymptotic condition 
(3.77) follows:  

 𝐻(𝜉)~𝜉, 𝜉 → ∞. (3.84) 
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To ensure the convergence of the integral in (3.81), we require fulfillment of the 
following conditions:  
 

 𝐾(𝜉) → 0, 𝜉 → ∞, (3.85) 
 

and  
 

 𝐻 ≤ 𝑂(𝜉),𝐾(𝜉) − 1 ≤ 𝑂(𝜉), 𝜉 → 0. (3.86) 
 

It turns out that solutions of the equations (3.82), (3.83) with boundary conditions 
(3.84) – (3.86) do exist, and the functions H and K behave as shown in Figure 3.11.  
The total energy of this solution, which we will interpret as the classical mass, can be 
obtained from (3.81):  
 

 𝑚𝑎𝑠𝑠 = 4𝜋𝑎𝑒 𝑓( 𝜆𝑒2), (3.87) 

 

where 𝑓( 𝜆𝑒2) value of the integral in (3.81), found numerically which turned out to be 

of the order of unity in a wide range of values 
𝜆𝑒2.  

 
 
 

   
 
 
 

 
 
 
 

 
 
 

Figure 3.11 − Behaviour of the functions H and K 
  

3.6.2 ’t Hooft - Polyakov’s soliton as a magnetic monopole  

From the asymptotic condition (3.84) –(3.86) it is seen that at large distances:  
 

 𝐹𝑎𝑖𝑗~ 1𝑒𝑟4 𝜀𝑖𝑗𝑘𝑟𝑎𝑟𝑘~ 1𝑎𝑒𝑟3 𝜀𝑖𝑗𝑘𝑟𝑘𝜙𝑎, (3.88) 

 
it follows that the magnetic field at large distances has the form: 
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 𝐵⃗⃗~ −1𝑐 𝑟𝑟3. (3.89) 

 

Comparing this equation with 𝐵⃗⃗ = 𝑔4𝜋𝑟2 𝑟⃗̂, one see, that this field is the field of a 

monopole which has a magnetic charge:  
 

 𝑔 = − 4𝜋𝑒 . (3.90) 

 
The constant e in (3.90) is the electromagnetic coupling constant, which in this simple 
model is related to the operator of electric charge as follows:  
 

 𝑄 = 𝑒𝑇3, (3.91) 
 

where 𝑇3- is the third component of the weak isospin operators, which are generators 
of the SO(3) gauge symmetry. Since the smallest possible nonzero electric charge that 
can appear in the theory is 𝑞0 = 𝑒/2, which corresponds to 𝑇3 = 1/2, then from 
(3.90) it follows:  
 

 
𝑞0𝑔4𝜋 = −12 . (3.92) 

 
Thus, comparing with Dirac’s quantization condition, we see that the magnetic charge 𝑔  of the found monopole takes the smallest value. This classical topologically 
nontrivial solution with finite energy is called the ’t Hooft - Polyakov monopole. 

The considered ’t Hooft - Polyakov monopole differs from the Dirac monopole in 
two important aspects: the ’t Hooft monopole -Polyakov has a finite core, while the 
Dirac monopole is a point object, and there is no need to introduce a Dirac string for 
the ’t Hooft - Polyakov monopole. The final size of the core of the ’t Hooft - Polyakov 
monopole comes from the fact that, for large 𝜉 , the equations (3.82) and (3.83) take 
the form:  

 

 
𝑑2𝐾𝑑𝜉2 = 𝐾, 𝑑2ℎ𝑑𝜉2 − 2𝜆𝑒2 ℎ = 0, (3.93) 

 
 where 𝐻 = ℎ + 𝜉. Thus, for large 𝜉 we have:  
 

 𝐾~𝑒−𝜉 ≈ 𝑒−𝑀𝑟 , (3.94) 
  

 𝐻 − 𝜉~𝑒−𝜇𝜉/𝑀 ≈ 𝑒−𝜇𝑟 , (3.95) 
 

where 𝜇 = (2𝜆)1/2𝑎  and 𝑀 ≈ 𝑒𝑎  are the scalar and gauge boson masses, 
respectively. Hence it follows that the approach to the asymptotics of each field is 
controlled by the masses of the corresponding particles. Therefore, we can assume that 
the ’t Hooft - Polyakov monopole has a certain size, determined by its mass. 
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At distances less than this size, the role of massive fields is reduced to providing 
a smooth structure, and at distances greater than the size of the monopole, they rapidly 
decrease, leading to field configurations indistinguishable from the Dirac monopole. 
We divide the contribution to the energy in (3.81) into two parts corresponding to the 
values of the fields inside and outside the core monopole respectively. Outside the core 𝐷𝜇𝜙 = 0 and the electric field 𝐸 = 0. 

The magnetic field remains: 
  

 ∫ 𝑑3𝑥 12𝐵2 = 12 ( 𝑔4𝜋)2 ∫∞1/𝑀 4𝜋𝑟2𝑑𝑟 1𝑟4 = 12 4𝜋𝑒2𝑀. (3.96) 

 
Thus, the monopole is heavy, since it has a small core, and the Coulomb magnetic 
energy becomes infinite at 𝑟 → 0. As for the Dirac string in the case of the ’t Hooft 
Polyakov monopole , then it is replaced by a scalar field. To see this, we write the 
asymptotic solutions in the form:  
 

 𝐴𝑎𝑖 = 𝜀𝑎𝑖𝑗 𝑟𝑗𝑒𝑟2 , 𝜙𝑏 = 𝑎𝑟𝑏𝑟 . (3.97) 

 

Field 𝐴𝑎𝑖  in (3.97) can be represented as:  
 

 𝐴𝑎𝑖 = 1𝑎2𝑒 𝜀𝑎𝑏𝑐𝜙𝑏 ∂𝑖𝜙𝑐 ,  (3.98) 

 
and the tensor of the magnetic field at large distances then has the form:  
 𝐹3𝑖𝑗 = ∂𝑖𝐴3𝑗 − ∂𝑗𝐴3𝑖 − 𝑒(𝐴1𝑖𝐴2𝑗 − 𝐴2𝑗𝐴1𝑖 ) = ∂𝑖𝐴3𝑗 − ∂𝑗𝐴3𝑖 + 1𝑒𝑎3𝜙(∂𝑖𝜙 × ∂𝑗𝜙).  (3.99) 

 
Thus, the magnetic field tensor is determined by the formula: 
  

 𝐹𝑖𝑗 = ∂𝑖𝐴𝑗 − ∂𝑗𝐴𝑖 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑒𝑟𝑚. (3.100) 
 

By comparing the Dirac monopole and ’t Hooft - Polyakov monopole, the additional 
term is singular for Dirac monopole and has a Dirac string, while for the ’t Hooft - 
Polyakov monopole, the additional term is a smooth function and includes scalar fields. 
To conclude, one can say that in the SO(3) -model, where the non-Abelian symmetry 
is spontaneously broken to the electromagnetic U(1)-symmetry, there exists a 
topologically nontrivial solution with finite energy – the ’t Hooft - Polyakov monopole 
with the following features: 

1. It behaves in the same way as Dirac’s monopole at large distances. 
2. It has a finite core, the size of which is determined by the masses of the gauge 

boson or scalar particle. 
3. The classical mass of the monopole is of the order of the scale of spontaneous 

symmetry breaking, i.e, the vacuum scalar field. 
4. There is no need to introduce the Dirac string. 
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3.7 Monopole searches 

This section is devoted to the diversity of theories and approaches which were 
made in relation to magnetic monopoles. More precisely, different theories make very 
different predictions, and even within the same approach, the properties of monopoles 
can vary greatly. 

In the 1930s, the famous theorist Paul Dirac predicted the existence of unique 
particles with only one magnetic pole - magnetic monopoles. Since then, scientists 
around the world have tried to detect these particles in nature. Therefore, intensive 
searches for magnetic monopoles have been carried out since the early 1980s. 
 

3.7.1 Early searches for 𝓜𝒔. 
In the previous section we have shown that Paul Dirac in 1931, made a connection 

of isolated poles and the quantization of electric charge, which was the first strong 
scientific motivation for searches of magnetic monopoles. He inspired scientists for 
conducting a large variety of imaginative experiments. 

Another interesting point is that ℳ𝑠  compared to another particles  are 
supposed to be absolutely stable. Take the Higgs boson as an example, which has a 

lifetime 10−22𝑠., whereas ℳ𝑠  can be destroyed only with other ℳ𝑠  of opposite 
charge, where would be annihilation processes with the production of a burst of 
elementary particles and radiation. Such a scenario means that if ℳ𝑠  are stable 
particles, which were produces in the early Universe, then they would still exist. 

A hundred years before Dirac’s prediction of the monopole, another scientist, 
Michael Faraday, discovered the phenomenon of electromagnetic induction: a 
changing magnetic field creates an electric current in a circuit. This phenomenon was 
another interesting way to find monopoles. When a monopole carrying a Dirac 
magnetic charge flies through a superconducting ring, the current in the ring changes 
so that the magnetic flux through the ring changes by exactly two quanta of magnetic 
flux. This is how scientific groups have been looking for monopoles for a long time. 

In the first of such experiments, which collected data over five months, a current 
jump occurred, very similar to the desired event of a monopole passing through the 
coil. This incident, called the "Cabrera event" (by the name of the experimenter who 
noticed it-Blas Cabrera of Stanford University), occurred in 1982 [131]. It has never 
been explained. Later and much more sensitive experiments did not find anything like 
this. In experimental physics, a single observation does not give the right to announce 
a discovery. Only multiple confirmations of the effect, preferably in different 
laboratories, would make it possible to speak of the evidence-based detection of the 
desired particle. It is now believed that this mysterious event was caused by some 
unaccounted for external influences on the detector. 

There is another interesting research which studies the GUT’ monopoles. In 1974 
it was realized [132-133] that the electric charge is naturally quantized in GUTs of the 
strong and electroweak interactions. ℳ𝑠 appear at the phase transition corresponding 
to the spontaneous breaking of the unifed group into subgroups, one of which is U(1), 
which describes electromagnetism. In Figure 3.12 is illustrated [134]: 
 a) the GUT monopole configuration, where the different zones related to the 
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following:  

1) 𝑟~10−29𝑐𝑚 corresponds to Grand Unification zone, which contains virtual X 
bosons. 

2) 𝑟~10−16𝑐𝑚 corresponds to the electroweak unification zone, which contains 

virtual 𝑊± and 𝑍0 bosons. 

3) 𝑟~10−13𝑐𝑚  corresponds to the confinement zone, which contains virtual 
photons, gluons, a fermion-antifermion condensate and four-fermion bags.  

4) For radii greather than a few femtometers, there is a field of a magnetic charge 𝐵 = 𝑔/𝑟2. 
b) The monopole catalysis of proton decay due to the reaction 𝑝 +𝑀 → 𝑀 +𝑒+ + 𝜋0. 
c) The effect of the presence of a four-fermion condensate, 𝑢̅𝑢𝑑𝑒+ can stimulate 

proton decay. 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 3.12 − The GUT monopole configuration [134, p.3]  
 

It is estimated that the mass of GUT’s monopoles is very high, approximately 1017𝐺𝑒𝑉/𝑐2 , which is much more massive than a proton - 1𝐺𝑒𝑉/𝑐2. Such a heavy 
mass of a monopole makes it difficult to find them in experiments. So, the LHC 

provides a maximum collision energy (~104𝐺𝑒𝑉), which is not enough for searching 
such a massive monopoles. The creation of such particles requires enormous energies, 
and they could appear only in the first moments of the life of the Universe [135]. 

One of the important components of modern cosmological scenarios is the 
inflation model. Its main idea is that in the earliest stages, the Universe experienced a 
period of accelerating expansion. One of the reasons for creating this scenario was the 
so-called monopole problem [136]. This problem was a key motivation for the creation 
of a theory of cosmological inflation. The fact is that the early Universe was so hot that 
very massive particles, including monopoles, could easily arise in it. But by the early 
1980s, it was already clear from experiments that monopoles are very rare, and it was 
necessary to come up with some kind of mechanism leading to the almost complete 
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disappearance of such relict particles. The idea is extremely simple. To make the 
density of particles small, it is necessary to sharply increase the volume of particles 
they occupy, while the number of particles remains the same. Inflation is a perfect 
explanation for this.  

Thus, the so-called cosmic monopoles are related to the Big Bang theory as 
topological defects arising when the Universe expanded and cooled.  But then they 
could survive to this day, and we can hope to register such objects from space.  

There are large-scale magnetic fields in our Galaxy. A magnetic charge that has 
flown into such a field will take energy from it, accelerating to high speeds. If there are 
many monopoles, they will simply "eat up" the magnetic field of the Galaxy. However, 
in reality one can see that the magnetic field of the Galaxy is not significantly disturbed. 
The existence of a galactic magnetic field makes it possible to place an upper limit on 
the total number of such particles so this limitation is called the Parker limit or bound, 
named after the astrophysicist Eugene Parker [137]. In Figure 3.13 [130] illustrated is 
the strength of the present galactic magnetic fields, the upper limit on the monopole 

flux ℱ through a unit area. ℱ is the number density 𝑛 of monopoles: ℱ = 𝑛𝜐4𝜋, where 𝜐 is the monopole velocity. 
 
 

 
 
 
 
 
 

 
 

 
 

 
 

 
 

Figure 3.13 − Upper bounds on the cosmic monopole flux [130, p.5] 
 

In Figure 3.13 the dotted line shows the predicted monopole density according to 
the traditional Big Bang theory; that prediction lies entirely within the gray shaded area 
representing the densities that have been excluded by observations. The conflict 
between theory and observation is solved by introducing cosmological inflation, which 
reduces the predicted flux to an unobservable level. With other coloured lines upper 
bounds on the monopole flux from the MARCO, ANITA, ANTARES, IceCube 
experiments are presented. 

The classical Dirac monopole has no electric charge. However, in some models, 
monopoles, in addition to magnetic, also have an electric charge. Such particles, dyons, 



74 
 

were invented by the American theoretical physicist Julian Schwinger . They are 
exotic, but they are also been looked for. Or maybe ordinary particles have a magnetic 
charge, but a very small are? This assumption was also checked, and, for example, no 
traces of a magnetic charge were found on the electron. 

The next searches were carried out both in the analysis of the lunar soil, and in the 
study of ancient fossils. One of the first scientific experiments with moon rocks was to 
search for a concentration of magnetic monopoles by Alvarez [138]. 

A moving magnetic charge induces a circular electric field around itself, 
interacting with the surrounding electric charges. In particular, it can remove electrons 
from their orbits in atoms. This means that the entire group of ionization methods 
developed for the detection of electrically charged particles can be used to detect 
monopoles - gas, scintillation, semiconductor, spark [139-141]. 

Dirac monopoles have a large charge, therefore they cause very high ionization in 
matter, and, in contrast to electrically charged particles, the ionization of matter by 
monopoles is almost independent of velocity in a wide range of energies. In addition 
to ionization by an electric field, a magnetic monopole is capable of causing a specific 
magnetic ionization effect in atoms, which is not observed for electrically charged 
particles. The huge charge of monopoles makes it possible to search for them by 
Cherenkov radiation - the light emitted by a particle in a transparent medium (in water, 
ice, etc.) when the particle’s speed is higher than the speed of light in this medium 
[141]. A relativistic monopole emits almost 7000 times more Cherenkov light than an 
ordinary electrically charged particle moving at the same speed. Such events were 
looked for using the NT200 neutrino telescope (consisting of photomultipliers 
submerged under the ice of Lake Baikal) and in the AMANDA experiment, which 
worked in the Antarctic ice at the South Pole [142-143]. All these experiments were 
unsuccessful. 

 
3.7.2 𝓜𝒔 in spin ice 

Let’s consider the next interesting approach in searching for ℳ𝑠. Despite the fact 
that such particles have not yet been found in nature, physicists were able to observe 
objects in some substances that behave like magnetic monopoles. Let’s take spin ice as 
an example. Spin ice is a substance in which the magnetic moments of atoms are 
organized in the same way as protons are organized in ordinary ice. At temperatures 
close to absolute zero, the spins of atoms line up in such a way that some of them 
“look” into the cell of the crystal lattice, and some look out. As a result, a quasi-particle 
is formed in the spin ice, resembling a magnetic charge, not tied to a specific physical 
carrier. In other words, in spin ice there are collective states of electrons that behave 
like magnetic monopoles — separate magnetic charges, see Figure 3.14 [118]. 

So, in spin ice, collective electron formations with special magnetic properties can 
exist. They can move around the crystal, interact with a magnetic field, are attracted to 
each other - in general, they can behave like magnetic monopoles. If we have a pair of 
opposite monopoles in a crystal, then due to attraction they will begin to get closer, and 
when they find themselves near, they - it seems- should annihilate. 
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Figure 3.14 – Monopole in spin ice. Under the action of an external magnetic field, 
such monopoles will move to opposite ends of the sample, forming a magnetic current 
(below). At the level of individual crystal cells, such motion is obtained by jumping 
the monopole from one site to another, caused by an electron spin flip (above). [118] 

 
This would be a completely natural phenomenon, which resembles the mutual 
elimination of opposite electric charges - for example, the annihilation of an electron 
and a positron, or the "contraction" of electrons and holes in semiconductors. 

But this is where the analogy between magnetic monopoles and electric charges 
does not work. It turns out that magnetic monopoles of opposite signs are not always 
easy to eliminate. They can be very close, within walking distance from each other, but 
at the same time, for some reason, they may not want to annihilate. 

Let’s explain this method in detail. For each electron, we assign an arrow (this is 
its spin), which points from one atom to another. We will assume that the main 
magnetic state of the lattice is when at each site two arrows enter and two go out (rule 
"2-2"). We will assume that it does not matter at all from which side the arrows enter 
and from which they exit - in this model only their number will be important. An 
example of such situation is shown in Figure 3.15 [144]. 

Now take and turn over one arrow (Figure 3.16 , left). Then, in two neighboring 
nodes, the balance of arrows is disturbed: in one node (it is shown in red) three enter, 
and one comes out (node "3-1"), and in the other - on the contrary (node "1-3" it is 
shown in blue). We will consider these two nodes as magnetic monopoles of the 
opposite sign. Monopoles do not have to be located near to each other. One can, for 
example, turn over another couple of arrows, and then the nodes of the form "3-1" and 
"1-3" will diverge, but no new monopoles will appear in this case. For example, in 
Figure 3.16 on the right, at all nodes, except for two colored ones, the rule "2-2" is 
fulfilled. This situation can be obtained from the ground state of the crystal by turning 
over three arrows along the path highlighted in yellow. 
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Figure 3.15 − Square lattice with arrow links simulating spin ice. The most 

energetically favorable state of the lattice is when, at each site, two arrows point 
inward, and two – outward [144] 

 
 

 
 

 
 
 

 
 
 

 
 

Figure 3.16 − Lattices with a pair of monopoles [144]  
 

By turning over the arrows further, you can lengthen the highlighted line and 
spread the monopoles even further from each other. Since a couple of monopoles can 
be created, then it can be eliminated. For example, if in Figure 3.16 , on the left, turn 
around the black arrow - the monopoles will disappear. Faraway monopoles can also 
be eliminated - for this you just need to turn over one by one arrow on the highlighted 
path. The new technique which was discussed here opens up broad prospects for 
studying the new unusual state of matter. It is believed that new experiments with spin 
ice will make it possible to better understand the dynamics of magnetic defects in 
matter and correspondingly properties of magnetic monopoles. 

 
3.7.3 Superfluid liquid helium as 𝓜𝒔 
Over time, physicists have learned how to create systems that behave like 

magnetic monopoles, for example, some crystal structures which were discussed in the 
previous subsection. However, only recently physicists and mathematicians from the 
Austrian Institute of Science and Technology (2017) have proved that systems that do 
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not need to be created artificially can acquire the properties of monopoles, for example, 
nanodroplets of superfluid (flowing without friction at ultra-low temperatures) helium 
[145]. They, as it turned out, behave like magnetic monopoles in relation to the 
molecules of other substances immersed in them. Superfluid helium has been studied 
for a long time, but this characteristic was described for the first time.  

 
 
 
   

 
 
 

 
 
 
 
 
 

Figure 3.17− Superfluid helium droplets behave like magnetic monopoles  
 

3.7.4 Magnetic monopole in Bose-Einstein condensate 

Other searches of ℳ𝑠 were made by a team of physicists from Amherst College 
and Aalto University in Finland [119]. Physicists created synthetic monopoles in a 
Bose-Einstein condensate. For this purpose, they have created an artificial (synthetic) 
magnetic field generated by a Bose-Einstein condensate - a cold gas of rubidium atoms, 
whose temperature is close to absolute zero. In this case, the atoms stop behaving as 
separate particles and experience collective quantum behaviour. 

As a result of the experiment, scientists obtained evidence of the existence of 
synthetic monopoles in the form of snapshots of a cloud of atoms, where monopoles 
appeared at the ends of microscopic quantum vortices in an ultracold gas, see Figure 
3.18. 

 
 

 
 

 
 
 
 
 

 
 

 
Figure 3.18 − Schematic representations of the monopole creation process.  
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In the Figure 3.18 illustrated bose condensate cloud with unusual superfluid 
rotation. The speed of superfluid motion is shown in color, and the vortex of this 
rotation is shown by arrows. This vortex plays the role of a synthetic magnetic field, 
which has a monopole form. The wavy line shows a synthetic Dirac string. 

In fact, the synthetic magnetic monopole obtained in this work is not a Dirac 
monopole, but the authors of the article emphasize their connection. The connection 
exists, because the real magnetic monopole in electrodynamics is the magnetic charge 
at the end of the Dirac string (the wavy line in Figure 3.18). In other experiments with 
artificial magnetic monopoles, it was difficult to register this string. In this work, due 
to the fact that the synthetic potential can be measured, which is an analogue of the 
Dirac string they can manage it. This string, as well as a synthetic magnetic charge 
equal to the Dirac charge, therefore these facts allowed the authors to claim that they 
were observing the quantum aspects expected from a Dirac monopole. 

Scientists hope that his discovery will inspire CERN employees to conduct an 
experiment at the LHC. And then, who knows, perhaps it will be possible to find natural 
monopoles, or at least understand where in the Universe they should be looked for. 
 

3.7.5 Searches for 𝓜𝒔 in colliders 

If there is no chance to find ℳ𝑠  with the help of the previous considered 
methods, there is a way to produce them in colliders. Let’s take the MoEDAL (For 
Monopole and Exotic Detector at the LHC) experiment [147,148], which searched for ℳ𝑠 at a collision energy of 13 TeV. No traces of magnetic monopoles with masses up 
to 6 TeV and magnetic charges up to 5 Dirac units were found. Summing up all 
experiments (AMANDA, IceCube, MACRO and others [149-152]) one can illustrated 
a table with most of the results from GUT monopole searches, see Figure 3.21. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.21 − Flux upper limits for GUT and Mass Monopoles from different 

experiments 
 

During all experiments that were carried out the suggested properties of magnetic 
monopoles were established. Most of them can be considered as a consequence of the 

Dirac relation 𝑒𝑔 = 𝑛ℏ𝑐2 . 
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So, the main properties of ℳ𝑠 are: 

1. ℳ𝑠 (like the electric one) must be conserved. This means that even if heavy 
monopoles can decay into lighter ones, the lightest ones will be stable particles. 
Accordingly, once the monopoles have been created, they cannot be completely 
destroyed (you can only annihilate the northern monopole with the southern). 

2. If we take 𝑛 = 1 and the electric charge will be the charge of the electron, then 

the magnetic charge will take the value: 𝑔𝐷 = ℏ𝑐2𝑒 = 137𝑒2 = 3.29 × 10−8. 

3. It is well-known that electric charges have a very small coupling constant- the 

fine-structure constant 𝛼 = 𝑒2ℏ𝑐 ≃ 1137 . So that drawing analogy one can create the 

dimensionless magnetic-coupling constant as: 𝛼𝑔 = 𝑔𝐷2ℏ𝑐 ≃ 34.25. 

4. Dirac’s theory does not predict the monopole mass. So that nowadays there is 
no unanimous opinion according the to estimation of the monopole mass. Lower 
estimates for the monopole can be calculated from the classical electron radius: 𝑟0 =𝑒24𝜋𝜀0𝑚0𝑐2 = 𝛼𝐸𝜆02𝜋  , where 𝜆0 is the Compton electron wavelength, 𝑚0 is the electron 

mass. So that drawing analogy one can obtain the value of the classical magnetic 

monopole radius: 𝑟𝐷0 = 𝑔𝐷24𝜋𝜇0𝑚𝐷𝑐2 = 𝛼𝐸𝜆02𝜋  , where 𝑚𝐷  is the monopole mass. So 

equating the classical radii, one can obtain a lower estimate for the monopole mass: 𝑚𝐷 = (𝑔𝐷𝑒 2) 𝜀0𝜇0𝑚0 = 4692𝑚0. 
5. For calculating the energy that can be acquired by the ℳ𝑠 in a magnetic field, 

one take the formula 𝑊 = 𝑛𝑔𝐷𝐵𝑙 = 𝑛20.5𝑘𝑒𝑉/𝐺𝑐𝑚. 

The discovery of magnetic monopoles would have a huge effect on physics. Not 

only would this provide the first glimpse of the new laws of nature beyond the standard 

model, but their special properties would allow us to explore that new physics in ways 

not possible with other particles. Because monopoles are stable and interact with the 

electromagnetic field, they could easily be extracted from the trapping detectors and 

be used for a wide range of further experiments.  

Magnetic monopoles have also inspired condensed-matter physicists to discover 

analogous states and excitations in systems such as spin ices and Bose-Einstein 

condensates. However, despite the importance of those developments in their own 

fields, they do not resolve the question of the existence of real magnetic monopoles. 

Therefore, the search continues. 
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4 YANG-MILLS MONOPOLE WITH SPINOR SOURCE AND MASS 

GAP 
 

In recent decades magnetic monopoles obtained within the framework of non-
Abelian Yang-Mills theories find their applications to a wide variety of topics in 
theoretical physics, including various problems in the standard model and its 
extensions, astrophysics, and cosmology [153]. The simplest example of a regular 
localized monopole solution in SU(2) Yang-Mills theory is the well-known ’t Hooft-
Polyakov monopole, which was considered in a previous section. The obligatory 
condition for its existence is the inclusion into the system of a triplet of Higgs scalar 
fields ensuring the presence of a topological charge. A distinctive feature of such scalar 
fields is their nontrivial behaviour at spatial infinity. In this connection, one might 
suppose that, if it would be possible to find regular monopole-like solutions without 
involving scalar fields, then they might be topologically trivial. Consistent with this, 
the main purpose of the present research is to demonstrate the possibility of the 
existence of monopole-like solutions without scalar fields, which are replaced by a 
nonlinear spinor field. 

The study of nonlinear spinor fields was initiated by W. Heisenberg in the 1950’s. 
His main idea was the assumption that the nonlinear Dirac equation can describe the 
internal structure of an electron. In other words, this equation is a fundamental equation 
which enables one to get all main characteristics of an electron: its spin, charge, and 
mass. However, with the advent of quantum electrodynamics, further investigations in 
this direction were discontinued; one of the reasons for that was that the theory based 
on the nonlinear Dirac equation is nonrenormalizable. Next time the nonlinear Dirac 
equation has appeared as applied to an approximate description of hadrons within the 
Nambu-Jona-Lasinio model [154]. In that model, a nonlinear spinor field is not 
fundamental but is used as some approximation within QCD. Notice also that, unlike 
the Nambu-Jona-Lasinio model, in the present work we study the nonlinear Dirac 
equation with a mass term. 

In modern physics, the problem of the existence of a mass gap is one of the seven 
so-called “Millennium Problems”. To solve this problem, it is necessary that for any 
compact gauge group 𝒢 , there exists a Yang – Mills theory in ℛ4  (Euclidean 4-
dimensional space) with the mass gap [155]. It is well known that Yang-Mills theory 
is a non-Abelian gauge field theory. The millennium problem also requires that the 
proposed Yang-Mills theory satisfied to Wightman's axioms. 

In quantum field theory, the mass gap is the energy difference between the 
vacuum and the next lowest energy state. The vacuum energy is equal to zero and 
assuming that all energy states can be considered as particles in plane waves, the mass 
gap is the mass of the lightest particle. If the mass gap exists, then any state except the 
vacuum has an energy exceeding the vacuum energy by some fixed value. In other 
words, there is a nonzero lower limit for the masses of particles, which is called mass 
gap. 

Both experiments and computer simulation of equations confirm the existence of 
the mass gap. However, we cannot assume that the model corresponds to reality, and 
then use the experimental data to verify the mathematical properties of the model. Here 
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theoretical proof is needed. The quantum analogue is complicated by the problem of 
renormalization.  

Thus, in QCD, the problem of mass gap is one of the important and key problems 
in the theory of the strong interactions. This is due to the fact that this problem can only 
be solved using nonperturbative quantization methods applied to the SU (3) Yang - 
Mills theory. Since, the solving of the mass gap problem in QCD very complicated 
process, we try to replace such quantum systems by some approximate classical 
systems. This method will be considered in this dissertation, where we try study this 
problem in simpler situation for understanding the reason of appearance of the mass 
gap there. One can hope that using obtained results of the current research it would be 
possible to understand the nature of the mass gap in QCD. 

In this way, it was demonstrated that in the non-Abelian Proca theory, which 
interacts with a scalar Higgs field and nonlinear spinor fields, there was the mass gap 
[156]. Authors of this article, by analyzing the corresponding equations, showed that 
without the Higgs field the investigated particlelike solutions do not exist.  

In the following dissertation our main goal is to demonstrate the possibility of the 
existence regular particlelike solutions not in the non-Abelian Proca theory  and 
without the Higgs field, but in the theory of Yang-Mills. It would be of great interest if 
we find out that the energy spectrum of such monopole-like objects will have the mass 
gap. 

The presence of a mass gap in the energy spectrum of a particlelike solution in 
classical field theory is a rather rare phenomenon. Perhaps this property of the energy 
spectrum 
was firstly discovered for particlelike solutions of the nonlinear Dirac equation [157]. 
The corresponding mass gap  was called as «the lightest stable particle» , since the 
term «mass gap» was not popular at that time.  

In this research, we show that in SU (2) the Yang - Mills theory including with 
the nonlinear spinor field there is a mass gap. Therefore, we study topologically trivial 
monopole-like solutions in SU(2) Yang-Mills theory with a source in the form of a 
spinor field described by the nonlinear Dirac equation. An interesting feature of the 
aforementioned solution is that the energy spectrum has a global minimum—the mass 
gap. This property of the energy spectrum is caused by the presence of the nonlinear 
spinor field. 

It is demonstrated that the main reason for the existence of a mass gap is the 
nonlinear Dirac spinor field. We suppose that the nonlinear Dirac equation can 
approximately describes  virtual “sea” quarks interacting with virtual “sea” gluons. 
According to this assumption, the physical interpretation of these solutions is that they 
describe  a self-consistent system of monopoles created by “sea” quarks. Such a 
monopole+sea quarks object may behave yourself  as a quasiparticle in a quark-gluon 
plasma. This give us chance to understand the properties of such a quark-gluon plasma.  
That solution differs in principle from the ’t Hooft- Polyakov monopole by the fact that 
it is topologically trivial, and the asymptotic behavior of the radial magnetic field is 
different. 
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It should be noted here that the asymptotic behavior does not permit us to 
introduce the notion of a magnetic charge, since the integral of the magnetic field over 
a closed surface goes to zero at infinity. On the other hand, the asymptotic behavior of 
the radial magnetic field is similar to the asymptotic behavior of a Maxwellian dipole 
magnetic field, but the energy density is spherically symmetric, in contrast to a 
Maxwellian dipole. The research is organized as follows. In subsection 4.1, we write 
down the Lagrangian and general field equations for SU(2) Yang-Mills theory 
containing a nonlinear spinor field. In subsection 4.2, we present the Ans𝑎̈tze for vector 
and spinor fields and also the corresponding equations. The numerical solutions of 
these equations are sought in subsection 4.3, while in subsection 4.4 we study their 
energy spectrum, show the presence of global minimum and study the dependence of 
the dimensionless mass gap of the monopole on the dimensionless coupling constant 
between gauge and spinor fields. 

 
4. 1 Theory of Yang-Mills fields coupled to a nonlinear Dirac field 

Firstly we have to write the Lagrangian describing a monopole-like+ quark system 

in non-Abelian SU(2) field 𝐴𝜇𝑎 interacting with a nonlinear spinor field 𝜓: 

 

 ℒ = − 14𝐹𝜇𝜈𝑎 𝐹𝑎𝜇𝜈 + 𝑖ℏ𝑐𝜓̅𝛾𝜇𝐷𝜇𝜓 −𝑚𝑓𝑐2𝜓̅𝜓 + Λ2 𝑔ℏ𝑐(𝜓̅𝜓)2. (4.1) 

 

Here 𝑚𝑓 is the mass of the spinor field; 𝐷𝜇 = ∂𝜇 − 𝑖 𝑔2 𝜎𝑎𝐴𝜇𝑎 is the gauge-covariant 

derivative, where 𝑔 is the coupling constant and 𝜎𝑎  are the SU(2) generators (the 

Pauli matrices); 𝐹𝜇𝜈𝑎 = ∂𝜇𝐴𝜈𝑎 − ∂𝜈𝐴𝜇𝑎 + 𝑔𝜀𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐  is the field strength tensor for the 

SU(2) field, where 𝜀𝑎𝑏𝑐 (the completely antisymmetric Levi-Civita symbol) are the 

SU(2) structure constants; Λ is a constant; 𝛾𝜇 are the Dirac matrices in the standard 
representation; 𝑎, 𝑏, 𝑐 = 1,2,3  are color indices and 𝜇, 𝜈 = 0,1,2,3  are spacetime 
indices. 

More precisely, the Lagrangian consists of 4 terms, where the first term is related 

to the non-Abelian SU(2) field 𝐴𝜇𝑎, whereas the 3 others refer to the nonlinear spinor 

field 𝜓,  with 
Λ2 𝑔ℏ𝑐(𝜓̅𝜓)2  the nonlinear part. Its is important to mention that 

monopole-like solutions exist due to the presence of this nonlinear spinor term.   
Using Eq. (4.1), the corresponding field equations can be written in the form  
 

 𝐷𝜈𝐹𝑎𝜇𝜈 = 𝑔ℏ𝑐2 𝜓̅𝛾𝜇𝜎𝑎𝜓, (4.2) 

 

 𝑖ℏ𝛾𝜇𝐷𝜇𝜓 −𝑚𝑓𝑐𝜓 + Λ𝑔ℏ𝜓(𝜓̅𝜓) = 0. (4.3) 

 
Let us list some distinctive characteristics of the monopole+sea-quark system under 
consideration: 

1. There are monopole-like solutions of the equations (4.2) and (4.4) only for 
some particular choices of the parameters 𝑓2 and 𝑢1; 

2. There are particlelike solutions of the nonlinear Dirac equation (4.3) in the 
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absence of the vector field 𝐴𝜇𝑎; 

3. The Yang-Mills equation (4.2) has no static globally regular solutions in the 
absence of the spinor field; 

4. The set of equations (4.2) and (4.3) has no static regular solutions in the case 
of linear spinor field (i.e.,when Λ = 0). 

To obtain particlelike solutions, Eqs. (4.2) and (4.3) will be solved numerically as 
an eigenvalue problem for the parameters 𝑓2 and 𝑢1, since apparently it is impossible 
to find their analytical solution. 

 
4.2 Ans𝒂̈tze and equations  

Our purpose is to study monopole-like solutions of the equations Eqs. (4.2) and (4.3) 
describing objects consisting of a radial magnetic field and a nonlinear spinor field. To 
do this, we use the standard SU(2) Ans𝑎̈tze: 

 

 𝐴𝑖𝑎 = 1𝑔 [1 − 𝑓(𝑟)] (0     sin𝜑 sin𝜃cos𝜃cos𝜑0 −cos𝜑 sin𝜃cos𝜃sin𝜑0      0 −sin2𝜃 ) (4.4) 

 𝑖 = 𝑟, 𝜃, 𝜑 (in polar coordinates),  
 

 𝐴𝑡𝑎 = 0, (4.5) 
 

and the Ans𝑎̈tze for the spinor field [156, p.3].  
 

 𝜓𝑇 = 𝑒−𝑖𝐸𝑡ℏ𝑔𝑟√2(0−𝑢) , (𝑢0 ) , (𝑖𝑣sin𝜃𝑒−𝑖𝜑−𝑖𝑣cos𝜃 ) , (−𝑖𝑣cos𝜃−𝑖𝑣sin𝜃𝑒𝑖𝜑), (4.6) 

 
where the functions 𝑢 and 𝑣 depend on the radial coordinate 𝑟 and 𝐸/ℏ is the spinor 

frequency. In Eq. (4.6), each row describes a spin-1/2 fermion, and these two fermions 

have the same mass 𝑚𝑓 and opposite spins and are located at one point.  

Equations for the unknown functions 𝑓, 𝑢, and 𝑣 can be obtained by substituting 
the expressions (4.4)-(4.6) into the field equations (4.2) and (4.3),  

 

  −𝑓′′ + 𝑓(𝑓2−1)𝑥2 + 𝑔̃2  𝑢𝑣̃𝑥 = 0, (4.7) 

 

 𝑣′̃ + 𝑓𝑣̃𝑥 = 𝑢̃ (−𝑚̃𝑓 + 𝐸̃ + Λ̃ 𝑢2−𝑣̃2𝑥2 ), (4.8) 

 

 𝑢′̃ − 𝑓𝑢𝑥 = 𝑣̃ (−𝑚̃𝑓 − 𝐸̃ + Λ̃ 𝑢2−𝑣̃2𝑥2 ). (4.9) 

 
Here, equation (4.7) can be interpreted as a nonlinear generalization of the Maxwell 

equation with nonlinear part 
𝑓(𝑓2−1)𝑥2  and the density of magnetic charge 𝑔̃2  𝑢𝑣̃𝑥 . 
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Equations (4.8)-(4.9) describe dependence of spinor field on radial coordinate r. 
For convenience of making numerical calculations, we have introduced the following 

dimensionless variables: 𝑥 = 𝑟/λ𝑐, where λ𝑐 = ℏ𝑚𝑓𝑐 is the Compton wavelength; 𝑢̃ =𝑢√ Λλ𝑐𝑔 , 𝑣̃ = 𝑣√ Λλ𝑐𝑔 , 𝐸̃ = λ𝑐𝐸ℏ𝑐 , 𝑔̃2Λ = 𝑔ℏ𝑐λ𝑐2Λ ,  Λ̃ = 𝑔λ𝑐2 Λ,𝑚𝑓̃ = 1 . The prime denotes 

differentiation with respect to 𝑥. Then, equations (4.7)-(4.9) becomes independent of Λ̃: 
 −𝑓′′ + 𝑓(𝑓2−1)𝑥2 + 𝑔̃2Λ  𝑢𝑣̃𝑥 = 0, (4.10) 

 𝑣′̃ + 𝑓𝑣̃𝑥 = 𝑢̃ (−1 + 𝐸̃ + 𝑢2−𝑣̃2𝑥2 ), (4.11) 

 𝑢′̃ − 𝑓𝑢𝑥 = 𝑣̃ (−1 − 𝐸̃ + 𝑢2−𝑣̃2𝑥2 ). (4.12) 

  
4.3 Monopole-plus-spinor-fields solutions 

The purpose of this section is to study in more detail the properties of the monopole 
solution of Eqs. (4.10)-(4.12). To understand how the solution and hence the energy of 
the monopole depend on the parameters of the system, let us consider the series 
expansion of the functions 𝑓(𝑥), 𝑢̃(𝑥), and 𝑣̃ (𝑥) appearing in Eqs. (4.10)-(4.12) in 
the vicinity of the origin of coordinates : 
 

 𝑓 = 1 + 𝑓22 𝑥2 +⋯,    𝑢̃ = 𝑢̃1𝑥 + 𝑢33! 𝑥3 +⋯,    𝑣̃ = 𝑣̃22 𝑥2 + 𝑣̃44! 𝑥4 +⋯, (4.13) 

 

where 𝑣̃2 = 2𝑢̃1(𝐸̃ − 1 + Λ̃𝑢̃12)/3 was found from (4.10)–(4.12). These expansions 

and Eqs. (4.10)–(4.12) contain the following set of parameters: 𝑓2, 𝑢̃1, 𝑣̃2, 𝑔̃Λ, 𝐸̃.  We 
will solve Eqs. (4.10)-(4.12) numerically as a nonlinear problem for the eigenvalues 𝑓2 and 𝑢̃1 and the eigenfunctions 𝑢̃(𝑥), 𝑣̃(𝑥), and 𝑓(𝑥), whose typical behavior is 
shown in Figure (4.1)-(4.6) both for the ground state of the system under consideration 
and for the first excited state when the functions 𝑢̃  and 𝑣̃  possess one node. The 
results of the calculations of the system parameters are given in Table 1. 
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Figure 4.1 − The function 𝑢̃(𝑥)/𝑥 for different values of the parameter 𝐸̃ with Λ̃ =8, 𝑚̃𝑓 = 1, and 𝑔̃ = 1 for the ground state of the system 

 
 
 

   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.2 − The function 𝑣̃(𝑥)/𝑥 for different values of the parameter 𝐸̃ with Λ̃ =8, 𝑚̃𝑓 = 1, and 𝑔̃ = 1 for the ground state of the system  
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Figure 4.3 − The function 𝑓(𝑥) for different values of the parameter 𝐸̃ with Λ̃ = 8, 𝑚̃𝑓 = 1, and 𝑔̃ = 1 for the ground state of the system  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 − The function 𝑢̃(𝑥)/𝑥 for different values of the parameter 𝐸̃ with Λ̃ =8, 𝑚̃𝑓 = 1, and 𝑔̃ = 1 for the first exited state of the system  
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Figure 4.5 − The function 𝑣̃(𝑥)/𝑥 for different values of the parameter 𝐸̃ with Λ̃ =8, 𝑚̃𝑓 = 1, and 𝑔̃ = 1 for the first exited state of the system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.6 − The function 𝑓(𝑥) for different values of the parameter 𝐸̃ with Λ̃ = 8, 𝑚̃𝑓 = 1, and 𝑔̃ = 1 for the first exited state of the system 
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Table 1 − Eigenvalues 𝑢̃1 and 𝑓2 and the total energy 𝑊̃𝑡 for different values of 

the parameter 𝐸̃ with Λ̃ = 8, 𝑚̃𝑓 = 1, 𝑔̃ = 1. 

 
 

 
 
Asymptotical (as 𝑥 → ∞) behavior of the solutions is expressed by the following 
equation:  
 

 𝑓(𝑥) ≈ 1 − 𝑓∞𝑥 ,    𝑢̃(𝑥) ≈ 𝑢̃∞𝑒−𝑥√1−𝐸̃2 ,    𝑣̃(𝑥) ≈ 𝑣̃∞𝑒−𝑥√1−𝐸̃2 , (4.14) 

 
where 𝑓∞, 𝑢̃∞, and 𝑣̃∞ are integration constants. 

Now, lets describe the behavior of the Yang-Mills magnetic field. Physical 

components of the Yang-Mills magnetic field is defined as 𝐻𝑖𝑎 = −(1/2)√𝛾 𝜀𝑖𝑗𝑘𝐹𝑎𝑗𝑘 , 
where 𝑖, 𝑗, 𝑘 are space indices. The radial component of the Yang-Mills  magnetic 
field has the form:  

 

 𝐻𝑟𝑎~ 1−𝑓2𝑔𝑟2 , (4.15) 

 
where 𝑎 = 1,2,3 and we have dropped the dependence on the angular variables. The 
corresponding graphs for the radial components of the Yang-Mills  magnetic field are 
shown in Figure 4.7 and 4.9. More precisely, its asymptotic behavior 𝑥 → ∞ is  
 

 𝐻𝑟𝑎~ 2𝑓∞𝑔𝑟3. (4.16) 

 
 

The ground state 𝐸̃ 0.555 0.655 0.755 0.855 0.955 0.966 0.977 0.988 𝑓2 -0.21167 -0.1438 -0.092587 -0.0519 -0.016338 -0.012473 -0.00854 -0.0046 𝑢̃1 0.51075 0.4972 0.4714560 0.41848 0.2834 0.25342 0.2151 0.163  𝑊̃𝑡 15.6339 11.718 8.6202 6.4621 5.8124 6.049896 6.5242 
  

7.3827 

The first excited state, one-node solutions 𝐸̃   0.755 0.855 0.955 0.977 0.988  𝑓2   -0.43377 -0.23663 -0.087295 -
0.0526425 

-0.03217  𝑢̃1   0.6005 0.57331
012 

0.494131 0.43494 0.37143  𝑊̃𝑡   76.182 62.582 53.748 57.3803 65.957  
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It can be shown from this expression that, by its asymptotic behavior, the system 
monopole+nonlinear spinor fields differs in principle from the ’t Hooft-Polyakov 

monopole, magnetic field of which decreases as 𝑟−2. 
It is also interesting that in our theory there are also nonzero tangential components of 
the Yang-Mills magnetic field: 

 

 𝐻𝜃𝑎~ 1𝑔 𝑓′,    𝐻𝜑𝑏~ 1𝑔 𝑓′, (4.17) 

 
 where 𝑎 = 1,2,3 and 𝑏 = 1,2. Their behavior is shown in Figure 4.7 and 4.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
Figure 4.7 − The distributions of the color magnetic fields for different values of the 

parameter 𝐸̃: the radial component 𝐻̃𝑟𝑎 ≡ 𝑔𝑟02𝐻𝑟𝑎- to the ground state of the system  
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Figure 4.8 − The distributions of the color magnetic fields for different values of 𝐸̃: 

the tangential components 𝐻̃𝜃,𝜑𝑎 ≡ 𝑔𝑟0𝐻𝜃,𝜑𝑎 - to the ground state of the system 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. 9 − The distributions of the color magnetic fields for different values of 

the parameter 𝐸̃: the radial component 𝐻̃𝑟𝑎 ≡ 𝑔𝑟02𝐻𝑟𝑎– to the first excited state.  
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Figure 4. 10 − The distributions of the color magnetic fields for different values of 

the parameter 𝐸̃: the tangential components 𝐻̃𝜃,𝜑𝑎 ≡ 𝑔𝑟0𝐻𝜃,𝜑𝑎 - to the first exited state 

of the system  
 

To conclude, we have found the topologically-trivial solutions describing the 
self-consistent system of the non-Abelian magnetic field and non-linear spinor field.  

 
4.4 Energy spectrum  

In this subsection lets consider the total energy density of the monopole+spinor 
fields system, which has the following form: 

 

 𝜀̃ = 𝜀𝑚̃ + 𝜀𝑠̃ = 1𝑔̃Λ2 [𝑓′2𝑥2 + (𝑓2−1)22𝑥4 ] + [𝐸̃ 𝑢2+𝑣̃2𝑥2 + (𝑢2−𝑣̃2)22𝑥4 ], (4.18) 

 
where the expressions in the square brackets related to the dimensionless energy 

densities of the monopole 𝜀𝑚̃ ≡ (λ𝑐4𝑔2𝑔̃Λ2 ) 𝜀𝑚, and of the spinor field 𝜀𝑠̃ ≡ (λ𝑐4𝑔2𝑔̃Λ2 ) 𝜀𝑠. 
The corresponding distributions of the total energy density along the radius are 

shown in Figures 4.11-4.12. 
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Figure 4.11 − The energy density 𝜀̃ from Eq. (4.18) for different values of the 

parameter 𝐸̃- to the ground state of the system  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.12 − The energy density 𝜀̃ from Eq. (4.18) for different values of the 

parameter 𝐸̃ – to the first excited state.  
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Now, we have to investigate the energy spectrum of the system under consideration as 

a function of the parameter 𝐸̃. As the consequence, we will demonstrate the presence 
of a mass gap. For this purpose, we introduce the equation for a dimensionless total 
energy of the monopole-like object in the following form:  

 

 𝑊̃𝑡 ≡ 𝜆𝑐𝑔2𝑔̃Λ2 𝑊𝑡 = 4𝜋 ∫∞0 𝑥2𝜀̃𝑑𝑥 = (𝑊̃𝑡)𝑚 + (𝑊̃𝑡)𝑠, (4.19) 

 
where the energy density 𝜀̃ is taken from Eq. (4.18). One can follow from this equation 
that the total energy of the system is expressed in the sum of energies of the monopole (𝑊̃𝑡)𝑚 and of the spinor fields (𝑊̃𝑡)𝑠 despite the presence of the direct interaction 

between the vector and spinor fields. Using Eq. (4.19), we have calculated the 
magnitude of the total energy and presented them in Table 1.  
 Next, using this, we have plotted the corresponding energy spectrum of the 
system, see Figure 4.13. After that, we have plotted the curve that illustrates the 
existence of a mass gap- minimum in the energy spectrum of the monopole-like 
solutions obtained. 
 After that, we continued investigations in this direction by studying the 
dependence of the mass gap of the monopole on the dimensionless coupling constant 
between gauge and spinor fields. By calculating of the equations (4.10)-(4.12) and 

found the energy spectrum for each pair of Λ̃, 𝑔̃, where each value of total energy 𝑊̃𝑡 
depends on the value 𝐸̃. The results of the calculations are presented in Table 2.  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.13 − The spectrum of the total energy for the ground (solid line) and 

excited (dashed line) states from Eq. (4.19) as functions of the parameter 𝐸̃ (the bold 

dots show the values of 𝑊̃𝑡 taken from Table 1).  
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Table 2 −  Eigenvalues 𝑢̃1  and 𝑓2  and the energy of the mass gap  (𝑊̃𝑡)𝑚𝑖𝑛  as 
functions of the dimentionless coupling constant 𝑔̃Λ. 

 

 

Next, for every spectrum, we have calculated the magnitude of the mass gap (𝑊̃𝑡)𝑚𝑖𝑛 

and plotted contour profile of the mass gap values and dependence of (𝑊̃𝑡)𝑚𝑖𝑛 on 𝑔̃Λ 

in Figure 4.14 and 4.15. The corresponding values of the mass gap (𝑊̃𝑡)𝑚𝑖𝑛 , the 
eigenvalues 𝑓2 , 𝑢̃1  and the values of the dimensionless coupling constant  𝑔̃Λ  are 
collected in Table 2 .  
 

 
 

𝐸̃ 0.895 
 
 

0.901 0.910 0.925 0.919 0.920 0.9220 0.922 

𝑓2 -0.27 -0.224 -0.134 -0.064 -0.045 -0.037 -0.031 -
0.027 𝑢̃1 1.064 1.043 1.016 0.960 0.9895 0.983 0.979 0.976  

𝑔̃Λ 1.020 0.944 0.750 0.559 0.447 0.408 0.377 0.353 

(𝑊̃𝑡)𝑚𝑖𝑛 35.35
5 

36.75
0 

40.165 43.080 44.640 45.071 45.380
  

45.62
3 

𝐸̃ 
 
 

0.934 0.933 0.935 0.934 0.934 0.935 0.935 0.935 

𝑓2 
 
 

-0.017 -0.015 -0.013 -0.010 -0.0071 -0.004 -0.002 -0.0013 

𝑢̃1 
 
 

0.921 0.928 0.919 0.924 0.924 0.919 0.919 0.920  

𝑔̃Λ 
 
 

0.306 0.283 0.265 0.237 0.193 0.159 0.118 0.075 

(𝑊̃𝑡)𝑚𝑖𝑛 
 

45.880
4 

46.065 46.207 46.376 46.686 46.824 46.985  47.029 
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Figure 4.14 – Contour profile of the mass gap values (𝑊̃𝑡)𝑚𝑖𝑛 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 4.15 – The dependence of the mass gap (𝑊̃𝑡)𝑚𝑖𝑛 on the coupling constant 𝑔̃Λ 
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From Figure 4.15 we can conclude that the mass gap of the monopole interacting with 
the nonlinear spinor field depends on one parameter 𝑔̃Λ only. Physical meaning is that 
the dimensionless energy of the monopole and its mass gap depend only on the ratio of 
the coupling constant 𝑔 between the gauge and spinor fields to the constant Λ of the 
nonlinear spinor field. 

In this part of the dissertation regular finite-energy monopole-like solutions within 
SU(2) Yang-Mills theory containing the doublet of nonlinear spinor fields are obtained. 
Physical interpretation of these solutions is that they describe a self-consistent 
monopole-plus-sea-quarks system. The solutions obtained have been used to describe 
quasiparticles (monopole-plus-sea-quarks system) in a quark-gluon plasma. 

This problem was solved numerically as a nonlinear problem for the eigenvalues 𝑓2  and 𝑢̃1  and the eigenfunctions 𝑢̃(𝑥), 𝑣̃(𝑥), and 𝑓(𝑥). To analyze the obtained 
solutions, typical behavior of the the eigenfunctions, the distributions of the color 
magnetic fields, distributions of total energy density 𝜀̃ along the radius and energy 

spectrum of the system for different values of the parameter 𝐸̃ both for the ground 
state and for the first excited state were plotted.  

It is of interest to follow the behavior of the magnetic Yang-Mills field. 

Asymptotic behavior of the radial magnetic field as 𝑥 → ∞ is  𝐻𝑟𝑎~ 2𝑓∞𝑔𝑟3. It is seen 

from this expression that, by its asymptotic behavior, the system monopole-plus-
nonlinear-spinor-fields differs in principle from the ’t Hooft-Polyakov monopole, 

whose magnetic field decreases as 𝑟−2. This indicates that a distant observer does not 
see such an object like a color magnetic charge. On comparing the fall-off with 
Maxwell’s electrodynamics, one might suppose that the solution obtained by us 
describes a non-Abelian magnetic dipole; therefore, it should be emphasized here that, 
in contrast to a Maxwellian dipole, the energy density of our system is spherically 
symmetric. 
Results of calculations: 

1. The set of equations (4.10) and (4.12) has regular, finite energy solutions only 
in the presence of the spinor field; 

2. The set of equations (4.10) and (4.12) has monopole-like solutions only for some 
special choices of the system parameters 𝑓2 and 𝑢1; 

3. In the absence of the vector field 𝐴𝜇𝑎, there exist particlelike solutions of the 

nonlinear Dirac equation which describe a system possessing a minimum in the energy 
spectrum; 

4. In the absence of the spinor field, there are only trivial 𝑢̃ = 𝑣̃ = 0, 𝑓 = 0,±1; 
5. To the best of our knowledge, in the case of linear spinor field (i.e., when Λ =0) the set of equations (4.10) and (4.12) has no static regular solutions as well; 
6. The nonlinear Dirac equations possess regular solutions with finite energy and 

mass gap; 
7. The reason for the appearance of the mass gap in the monopole solution is the 

presence of the nonlinear spinor field. 
 To conclude, the important result of the calculations is that the energy spectrum 
possesses a global minimum, which can be interpreted as a mass gap, whose 
appearance is caused by the nonlinear spinor fields. We wish to emphasize once again 
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that the notion of the mass gap obtained in the present work differs from that employed 
in QCD. By the mass gap we mean a minimum in the energy spectrum of regular 
particlelike solutions. Next, we have plotted contour profile of the mass gap values and 

dependence of the mass gap (𝑊̃𝑡)𝑚𝑖𝑛  on the coupling constant 𝑔̃Λ . All results 
presented in following articles [158-161]. 
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CONCLUSION 

 

This dissertation is devoted to the study of two relevant and significant topics in 
the modern theoretical physics. The first part of the work is aimed to study the modified 
theories of gravity, their types, as well as  in-depth  research and qualitative analysis 
within the framework of these theories of regular solutions of compact astrophysical 
objects–𝒟–branes. As for the second important part of the dissertation, it focuses on 
the one of the long-sought particles in the Universe – magnetic monopoles.  
There are the following main results of the research: 

In the first part of the research: 

– A class of modified theories of gravity, which expand the general theory of 
relativity, preserving its positive features, was considered. It was illustrated that GR is 
modified in different ways, so that different theories were constructed. The first thing 
that needs to be said is that modified theories of gravity can be interpreted as providing 
an alternative to the cosmological constant or dark energy for explaining the  observed 
accelerated expansion of the Universe. We took  more attention on a higher order 
derivatives type of modified theory, especially on the Starobinsky model ℱ(𝑅), due to 
the fact that it looks simpler than other theories. In addition, much attention has been 
paid at analysing within these ℱ(𝑅) theories astrophysical objects predicted by GR 
without matter like branes in multidimensional space-time.  

– The multidimensional theory of gravity, especially the five-dimensional theory 
of Kaluza-Klein was analysed, where authors combined gravitational and 
electromagnetic interactions. One argument in support of studying extra dimensions is 
that this GUT is formulated only in higher-dimensional space-time. 

– Another argument in support of a transition to the geometry of a higher-
dimensional space is the possibility to analyze and investigate various compact 
extended  objects like thick branes. In superstring theories, a brane is attached to the 
ends of strings and can move in some enveloping space whose number of dimensions 
varies from zero (a point) to nine. Many scientists believe that we live in the thin brane 
embedded in the multidimensional space-time.  

– The research aims to give a comprehensive account of regular solutions of 
branes in multidimensional space-time within the framework of  ℱ(𝑅)  modified 
theory of gravity. Regular, flat-symmetric solutions in a vacuum at certain parameter 
values 𝑛 and 𝛿  are obtained. The obtained solutions are of great interest, since they 
are vacuum solutions, in contrast to similar solutions in general relativity.  
As a result: 

1) All regular solutions have AdS asymptotics.  
2) When increasing the parameters 𝛼, 𝑛 → ∞ the solutions tend to a limit that is 

no longer dependent on the values of these parameters.  
3) Not for all parameter of values 𝑛 there are solutions:   

– if 𝑛 = (2𝑝 + 1)/(2𝑞 + 1) , where  𝑝, 𝑞  are integers, then the solution is 

regular when 𝑥𝑁 > 0 and can be singular when 𝑥𝑁 < 0; 

– If the exponent 𝑛 is an irrational number, then there are generally no solutions.  

4) According to the equation 𝑅𝐴𝐵 − 12 𝛿𝐴𝐵𝑅 = 𝑇̂𝐴𝐵, the right part plays the role of an 
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effective energy-momentum tensor 𝑇̂𝜇𝜈. It has been shown that in this case the effective 

energy density 𝑇00 is negative and its dependence on the parameter values 𝛾, 𝛿, 𝛼, 𝑁 is 

investigated; 
5) Phase portraits for the  𝒟– branes are obtained; 
6) It is shown that regular solutions have a special point located in the center of 

the brane. As follows from the analytical analysis of the behavior of the solutions in 
the region of this point, such a point exists only at certain values of the parameter  𝑛: 1 < 𝑛 < 2.  
The resulting brane solutions can be an interesting model for cosmological research. 
The results are published in articles and conference papers. 

In the second part of the research: 
– This part deals with the main hypothetical elementary particle with a one 

magnetic charge - the magnetic monopole. The main historical background of ideas 
about monopoles in classical electrodynamics, Dirac monopoles, ’t Hooft-Polyakov 
monopoles was considered.  

– In the history of physics, the magnetic monopole is the most searched for 
elementary particle. Different methods and approaches of searching for Dirac 
monopoles like for instance cosmic rays, lunar soil, ancient fossils, moon rocks or their 
creation in a Bose-Einstein condensate were discussed. They have also been 
extensively searched for at LHC. Scientists haven't found them yet, so they have to 
keep searching. 

– This part offers monopole-like solutions within SU(2) Yang-Mills theory 
containing a doublet of nonlinear spinor fields. The main goal is to illustrate the 
presence of a minimum in the energy spectrum which can be considered as “mass gap”, 
which addresses one of  the seven unsolved Millennium Prize Problems. The mass gap 

Δ is the mass of the least massive particle predicted by the theory.  

Summarizing the results obtained,  
1) topologically trivial monopole-like solutions within SU(2) Yang-Mills theory 

containing a doublet of nonlinear spinor fields were found; 
2) we suppose that these solutions describe a magnetic monopole-like object 

created by a spherical lump of nonlinear spinor fields; 
3) the spherically symmetric solutions obtained here do not exist without the 

spinor fields which are the source of the color magnetic field. This enables us to arrive 
at an interesting conclusion that the reason for the appearance of a minimum in the 
energy spectrum is the presence of the nonlinear Dirac fields; 

4) it was demonstrated that the energy spectrum has a global minimum, both for 
the ground state and for the first excited state. This minimum considered as a mass gap; 

5) it was shown that the main reason for the appearance of the minimum in the 
energy spectrum is the presence of the nonlinear spinor fields; 

6) The distributions of the color magnetic fields 𝐻̃𝑟𝑎  and 𝐻̃𝜃,𝜑𝑎 , the energy density 𝜀̃, the spectrum of the total energy for the ground and excited states for different values 

of the parameter 𝐸̃ were illustrated. Next, the dependence of the mass gap (𝑊̃𝑡)𝑚𝑖𝑛 

on the coupling constant 𝑔̃Λ was studied.  
7) it was shown that our monopole-like solutions differs in principle from the ’t 

https://en.wikipedia.org/wiki/Mass_gap
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Hooft-Polyakov monopole in that they are topologically trivial.  
The results are published in the articles and conference papers. The tasks in the 

dissertation are fully solved: Differential equations describing 𝒟 – branes  in 
multidimensional modified theories of gravity and Yang-Mills monopole-like 
solutions with spinor fields were obtained. For these equations, the corresponding 
numerical solutions were obtained. We summed up theoretical and practical experience 
of the carried out investigation and gave a coprehensive understanding of the brane and 
monopole-like solutions. A lot of graphs and tables were given to illustrate the results 
of the work.  

Recommendations. Summarizing, the results obtained in the dissertation are of 
value for the development of the theory of gravity, grand unified theory, string theory 
and astrophysics. Based on the obtained results, the properties of 𝒟– branes  and 
magnetic monopole-like objects can be described. Also, the obtained results of  𝒟– 
branes in modified theory of gravity can be used to solve the problem of hierarchies, 
compactify additional dimensions and explain some cosmological problems.  

It is supposed that the obtained results will contribute to a deeper understanding 
of  the accelerated expansion of the Universe not only at the initial stages of the 
evolution of the Universe, but also at the present stage. The obtained regular brane 
solutions in gravitational theories are an interesting and valuable task for understanding 
the gravity interaction. From a higher dimensional point of view, thick branes are 
hypothetical objects that may be discovered in the future. Therefore, the study of their 
properties is an important task in theoretical physics. 

 Looking to the magnetic monopoles, although there is no evidence for the 
existence of magnetic monopoles, they are interesting theoretically. The magnetic 
monopole has the unique distinction of being the first among hypothetical objects and 
constructions that despite their unsuccessful searches and experimental evidence, they 
have remained the focus of intensive attention of scientists. Theoretical physics has no 
analogy in the research history of existence of a magnetic monopole. In the process of 
studying their history, a strong connection with other current research fields in 
theoretical physics is noticed: problems in the standard model, GUT, astrophysics, 
cosmology, the problem of confinement in QCD, the problem of proton decay, 
evolution of the early Universe and many others. 

The obtained monopole-like solutions in SU(2) Yang-Mills theory aim to give a 
comprehensive account to improve our understanding of the properties of magnetic 
monopoles. There is the possibility in the future to demonstrate the symmetry between 
electricity and magnetism and show that the introduction of magnetic charges can 
elegantly solve the long-standing mystery of nature - the quantization of electric 
charge. It is proposed that these monopole-like solutions describe a self-consistent 
monopole-plus-sea-quarks system. These solutions have been used to describe 
quasiparticles in a quark-gluon plasma. 

If scientists manage to find magnetic monopoles in nature or create them in the 
laboratory, then this discovery will confirm the assumption that the electric charges of 
all particles assume discrete values on which almost all modern physical theories are 
based. Therefore, it would be natural to assume that searching for magnetic monopoles 
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is a fascinating journey and finding them would be an incredible breakthrough for all 
modern physical theories. 

The corresponding minimum in the energy spectrum which is the mass gap has 
been discovered experimentally and confirmed through computer modeling, however 
it is still not clear theoretically, therefore it is supposed that these monopole-like 
solutions will help at the deeper level analyze and investigate this Millennium 
Unsolved Problem. We wish to emphasize that the mass gap obtained in the present 
work  can be considered as the QCD effect in non-QCD theory.  

In conclusion, I would like to express my hope that this dissertation work 
demonstrates new significant solutions, methods and concepts that contribute not 
only to the further development of science but also to a deeper understanding of the 
structure of the Universe. 
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